

QwikConnect conflicting layout and functional goals. To follow the

Optimizing Flex Jigh Speed

The design of flex and rigid-flex interconnect assemblies is an exacting science, made more so when management of high-speed digital signals is an added requirement. This is because material choices that support highspeed signal integrity and impedance matching can significantly affect the flexibility, weight, size and packaging of a flex circuit assembly.

Flex and rigid-flex design is successfully accomplished by following a recipe of best practices—executed via design rules in the layout software and other tools—to balance and manage the many trade-offs between

recipe, successful flex and rigid-flex PCB designers depend on a clear understanding of the intended application, particularly how rigid and flexible sections will be packaged within the enclosure, or stressed during use. This initial step in the design process will largely determine the tradeoffs between signal integrity and mechanical properties.

Dynamic Flex Versus Flex-to-Install

One of the first questions asked is whether the flex circuit assembly must bend or fold dynamically as a normal requirement of daily use—for example in an actuated robotic arm or in the folding wings of a man-portable drone. In these application examples, the designer would naturally prioritize materials and designs that optimize durability and integrity of the flexible circuits over other properties—even high-speed signal integrity. Obviously signal-management cannot be altogether ignored, but the question is moot if the flex circuit fails to meet flex cycle durability requirements.

At the opposite end of the spectrum, applications with little or no budget for data loss will require the designer to maximize signal integrity and impedance control over other parameters. In such situations, the choice is often made to route high-speed protocol signals over a solid copper ground plane. While unbroken ground planes are not particularly flexible, they do maximize shielding and control of the signal circuit. The challenge with this approach is that copper, being a relatively hard material, will eventually harden and crack as a result of repetitive stress cycles. Rolled-annealed copper may be an option for some applications where signal integrity warrants the additional cost and complexity. The improved ductility and larger copper grains make the copper less likely to crack due to bending.

While dynamic flex circuit assemblies are subject to repetitive bend forces as a condition of normal use, as a practical matter, most flexible circuitry is only flexed and stressed during installation or occasional service. In addition, virtually all mission-critical flex assemblies in our application space typically support modern datalink protocols such as Ethernet, USB, HDMI and so on. As a result, most of the application examples featured in this special issue of *QwikConnect* are designed to:

Robotic arm: Classic example of a highly dynamic application in which actuated wire and flex interconnect assemblies are qualified to deliver millions of flex cycles without electrical or mechanical failures

Ground Planes and Shields

Solid copper ground planes, mesh pattern ground planes, hybrid configurations, return path layouts, and other approaches to managing EMI emissions and signal line impedance are critical aspects of flex circuit design. Effective use of ground / shield planes combined with appropriate connector interfaces and matched-impedance flex circuits deliver optimal high-speed signal integrity.

Solid copper shield

- Mesh pattern shield
- take advantage of the benefits of flex and rigid-flex assemblies (principally size/weight reduction and performance reliability),
- 2. provide adequate flexibility for the install process, and
- 3. manage signal integrity within the data loss budget of the application and the electrical requirements of the datalink protocol.
- Obviously, "flex-to-install" applications can utilize additional ground planes for improved signal integrity compared to dynamic flex applications. Material choices such as the hatched polygon shielding illustrated in the sidebar are ideal for designs which must affect this balance between signal integrity and a target flexural modulus. The relative drawback is reduced signal

A "flex-to-install" assembly in which a flex circuit element is not subjected to daily dynamic stress

Hybrid solid/mesh

QwikConnect - January 2017 60-13 Class

integrity αs this design choice does not provide full EMI coverage and makes ground impedance matching more challenging. The addition of discrete solid copper return paths directly under high-speed traces can reduce this effect.

Return paths

Dielectric Constants

It is important to note that the polyimide/Kapton materials used in flex and rigid-flex circuit assemblies perform inherently better at high frequencies than the standard FR4 board materials commonly used in rigid PCBs. FR4 is the grade designation assigned to glassreinforced epoxy laminate sheets used in the fabrication of standard PCBs and in the reinforced portions of rigidflex interconnect assemblies. FR4 is a composite material made of woven fiberglass cloth with a flame-resistant epoxy resin binder. The composite nature of this material can adversely affect dielectric properties, and in turn, the board's ability to carry high-speed digital signals.

QwikConnect

placement of vias, proximity to noisy power traces or variable thickness in dielectric materials can result in signal integrity problems.

A PC board or flex circuit trace that is not terminated in its characteristic impedance to the board or I/O connector can also impact signal integrity by reflecting signals at the termination. For this reason, Glenair flex assembly designers pay considerable time and attention to flex-to-board terminations and flex-to-I/O connector terminations to take advantage of interconnect solutions that best match the characteristic impedance properties of the flex media. Several Glenair interconnect series, notably El Ochito, have optimized contact-to-contact spacing and length to ensure characteristic impedance is maintained from wire-to-I/O-to-flex-to-board. A new Glenair Micro-D sized solution, The Equalizer, takes ппага

the assignment one step further by passively compensating for losses incurred through cables and printed **circuit** boards (see datasheet page 21).

Rapid prototyping and 3D modeling

Mechanical / Electrical Modeling for **High-Speed**

Once board materials, I/O connectors and preferred flex-toboard termination methods have been chosen, the layout and mechanical design schematic of the assembly starts to take shape. It is at this stage that the number of layers in the flex assembly can be determined and decisions made

- For rugged mil-aero grade #24 AWG wire DC – 4 GHz frequency range
- 100 ohms
- Data pair isolation technology
- 50% size and weight savings compared to auadrax contacts
- Snap-in, rear release
- Integrated removal tool
- Gold plated copper alloy
- 10GBase-T compatible

on routing to meet packaging requirements. Even at this preliminary stagewhich includes the fabrication of "paper doll" or other 3D model types for fit check and ease-ofinstallation—best practices and ECAD design rules for optimizing the assembly for high-speed or high-frequency come into play. For example, we mentioned earlier that ground planes of rolled-annealed copper may be employed in applications that require both a high-flexural modulus and high signal integrity. In this case designers must be careful to ensure the material is modeled axially in line with desired flex direction as rolled-annealed copper is only truly flexible along the machine-line axis in which it was rolled. By the way, this design parameter can be important even in non-dynamic flex applications, for example if the assembly will be subjected to severe levels of vibration and shock.

In practical terms, designing flex for high-speed entails following established design rules that result in layer types with proven mechanical/electrical performance. This is the opportunity to reduce crosstalk, by shielding traces with copper planes, optimizing the spacing between traces, routing traces orthogonally to each other, or using differential pairs. These layer types include:

- Co-Planar Stripline: in this format, ground and power traces are carried on a single layer of the flex, but in an alternating pattern that isolates noise producing traces one from the other.
- Microstrip Circuits: Two-layer constructions with one all-metal layer assigned as ground. Applicable to 50 Ω characteristic impedance applications.
- Stripline Circuits: Well suited for 100Ω and differential pair applications. Stripline circuits sandwich transmission traces between two ground planes delivering outstanding signal integrityalbeit with some loss of flexibility.
- 360° Shielded Stripline: Signal line is surrounded on four sides by ground replicating the impedance characteristics of coaxial cable. Used to combat crosstalk and deliver maximum signal integrity, again with appreciable loss of flexibility in the assembly.

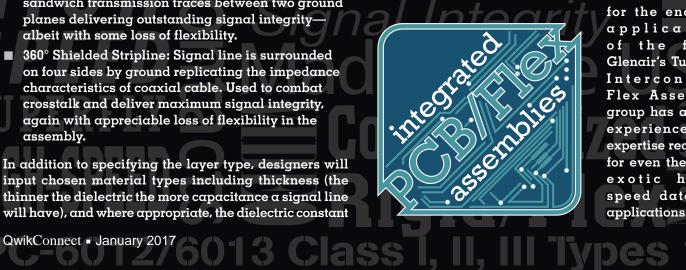
In addition to specifying the layer type, designers will input chosen material types including thickness (the thinner the dielectric the more capacitance a signal line will have), and where appropriate, the dielectric constant

high-frequency RF and microwave applications, Glenair typically utilizes base material alternatives to FR4, such as Rogers 4000 (a hydrocarbon ceramic laminate with superior high-frequency, low-loss performance). Attenuation Attenuation is not unique to high-speed protocol applications. In fact, attenuation theory was first developed in the 1800s in the telegraph industry to model the performance of analog transmissions over longdistance, cross-country wires. Simply put, the longer the wire, the less signal makes it to the far end. High-speed signal transmission on boards is very lossy compared to the performance of cables. Distances as short as a few inches can be problematic. In addition to attenuation over distance, dielectric discontinuities in PC board or flex circuit traces can also cause unwanted backreflection of signals. Even seemingly minor changes in material properties, trace width or shape, inexact

By comparison, flex circuit dielectric materials are

homogeneous (they do not contain glass fillers) and

so deliver more consistent dielectric performance. For


QwikConnect - January 2017

IPC-6012/6013 ClassT

From missile applications to small form-factor radar. Glenair flex circuit assemblies are optimized for high-speed data transmission

of the material. Armed with these key variables, ECAD tools can perform impedance calculations to ensure the integrity of high-speed signals. Establishing the dielectric constant of insulating materials is a critical step as flex circuit traces can readily couple to another trace causing interference. This danger increases as signal rise and fall times get shorter, and as the traces get longer. As signal speed depends upon the dielectric constant of the materials insulating the line, this value must be determined to effect digital circuit integrity.

As previously noted, all of this work depends on the quality of the analysis done up-front, especially an

understanding for the end-use application of the flex. Glenair's Turnkey Interconnect Flex Assembly group has all the experience and expertise required for even the most exotic highspeed datalink applications.

TURNKEY PCB/Flex Circuit Assemblies Manufacturing • Product array

CONNECTORIZED FLEX ASSEMBLIES

RIGID BOARD ASSEMBLIES

RIGID FLEX ASSEMBLIES

- flexible circuit routing

GLENAIR INTEGRATED FLEX ASSEMBLIES: A UNIQUE VALUE PROPOSITION

Glenair is a vertically-integrated operation, with over 1 million square feet of engineering and manufacturing space in the United States, Mansfield U.K., and Bologna Italy. Only Glenair, amongst the many suppliers of Flex and Rigid Flex assemblies, offers such a broad range of high-reliability printed circuit board connectors of our own design and manufacture—including thousands of Mil-gualified and commercial I/O and PCB termination solutions. Glenair is IPC 610, ISO 9001 and AS9100 certified.

Board Manufacturing

Glenair offers IPC Class III manufacturing, up to 8+ layers, multiple panel sizes and panel thicknesses up to .5 inch. A broad variety of materials are available for PCB/Flex fabrication, including Polyimide, FR-4, Rogers 4003, and Isola. Available surface finishes include ENIG, HASL, Ni/Au and more.

Turnkey Validation Testing and Production Delivery

Glenair's in-house capability can meet every requirement, from a single piece to large production orders. All assemblies are terminated, tested, and packaged in our Glenair Quality System controlled production lab.

TURNKEY

PCB/Flex Circuit Assemblies

Full-service: from concept and design through fabrication, assembly and test

CB/flex circuit assemblies solve a myriad of problems for the electrical engineer. PCB/ flex circuits offer unsurpassed size and weight reduction compared to cable bundles, especially in tight spaces with multi-branch routing. Flex circuitry offers outstanding mechanical performance, and is able to withstand extreme vibration environments and extended duty through thousands of flexing cycles. Replacing complicated

wire bundle assemblies with high-density flex assures faster, error-free LRU assembly.

Glenair offers full-service, turnkey PCB/flex circuit assembly in our vertically-integrated design and manufacturing lab—from concept and Gerber design layout, through PCB/ flex fabrication, termination to any of our I/O, board level or mezzanine connectors, and rigorous system validation testing and inspection. Ask us about our quick-turn 3D prototyping services.

ADVANTAGES OF FLEX CIRCUITRY

- Optimal size and weight reduction
- Repeatable, reliable installation virtually eliminates wiring errors
- Withstands high levels of shock and vibration
- Convenient packaging and integration
- Up to 1 million flex and duty cycles

© 2017 Glenair, Inc • 1211 Air Way, Glendale, CA 91201 • 818-247-6000 • www.glenair.com • U.S. CAGE code 06324

6

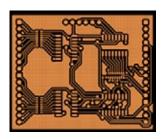
Point-to-point or multibranch connectorized jumpers Flexible, repeatable routing for complex 3-dimensional installations Save size, weight, and improve density compared to wire bundles Broadest range of high-performance I/O and board connectors Optimized reliability: high-speed, high temp, high shock and vibe

Rigid substrate assemblies for rugged durability and performance Hard-mount points for connectors and surface-mount components Ideally suited for double-sided component mounting

Superior performance in high shock and vibe applications

"Best of both worlds" combines durable rigid-board architecture with flex circuitry for double-sided component mounting and easy/

3-D vibration-resistant flex routing advantage plus hard mount points and stiffeners as required


Integration of active componentry with flex circuitry

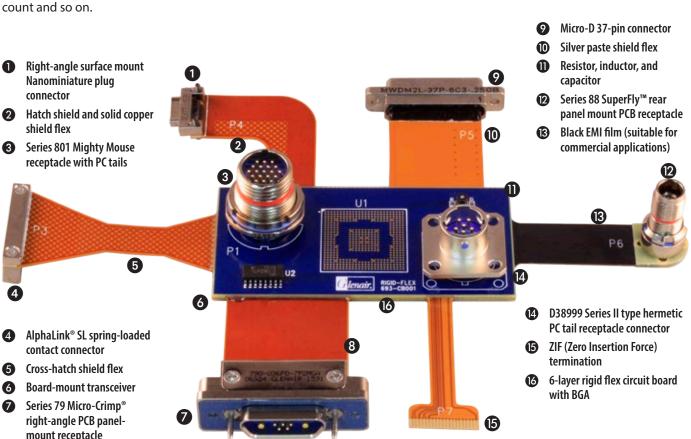
TURNKEY **PCB/Flex Circuit Assemblies**

Flex and rigid board specification standards

TURNKEY PCB/Flex Circuit Assemblies Design options and rapid prototyping

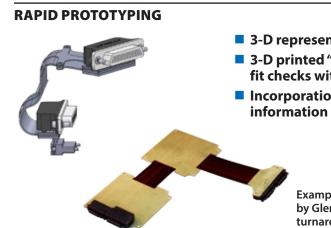
SPECIFICATION STANDARDS

The following tables describe, in brief, Glenair flex and rigid flex manufacturing formats and specifications. Glenair recommends commercial customers understand and adhere to IPC-6012/6013 specification standards which are fully supported by Glenair. Military customers may alternatively cite specifications IAW MIL-PRF-31032.


* Information below is based on the most common materials and physical property requirements. Please consult the factory for alternatives

Flex Assemblies

Manufacturing Formats	Gerber • DXF • Altium		
Layer Count	Max typ. up to 8		
Termination	Thru hole • Reverse bare • Floating fingers / Sculpted circuits • ZIF Termination		
Conductor Width/Space	Lines: .004" • Spacing: .004"		
Bend Radius (military)	Single Metal Layer: 4–6X overall flex thickness• Double Metal Layers: 6–10X overall flex thickness • Multi Layer Metal: 12–15X overall flex thickness		
Materials / Tg	Substrate: Polyimide/Kapton Flex adhesive and adhesiveless -60°C to 125°C Cover layer: Kapton Stiffener: FR4 or Kapton (metal stiffeners available upon request) Conductor: Copper, Aluminum, SS, Constantan High-temperature materials available		
Surface Finish	ENIG • HASL • Immersion Tin and Silver		
Specs and Quality Management	IPC-6013 Class I, II, III, types 1-3 • ISO 9001, AS 9100		

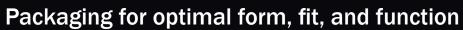

Rigid Flex Assemblies

Manufacturing Formats	Gerber • DXF • Altium		
Max Panel Thickness	Range of thicknesses from .010" to as thick as .250"		
Layer Count	20 +		
Via Technology	Blind, buried • Thru hole • Filled (conductive and non-conductive)		
Conductor Width/Space	Lines: .004" • Spacing: .004"		
Materials / Tg	Substrate: FR4: 180° C		
Surface Finish	ENIG • HASL • Immersion Tin and Silver		
Specs and Quality Management	Vlanagement IPC-6013 Class I, II, III, type 4 • ISO 9001, AS 9100		

mount receptacle 8 Solid copper shield flex

© 2017 Glenair, Inc • 1211 Air Way, Glendale, CA 91201 • 818-247-6000 • www.glenair.com • U.S. CAGE code 06324 • Integrated PCB/Flex Assemblies Dimensions in Inches (millimeters) are subject to change without notice.

© 2017 Glenair, Inc • 1211 Air Way, Glendale, CA 91201 • 818-247-6000 • www.glenair.com • U.S. CAGE code 06324 • Integrated PCB/Flex Assemblies Dimensions in Inches (millimeters) are subject to change without notice.


STANDARD DESIGN OPTIONS FOR INTEGRATED (CONNECTORIZED) FLEX/RIGID FLEX ASSEMBLIES

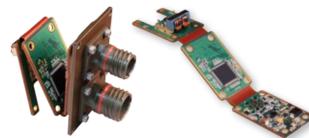
Properly designed flex and rigid flex assemblies offer significant space and weight savings compared to wire harnesses. Many design options are available, including integrated stiffeners, shielding, factory forming, selective bonding, termination, layer

> 3-D representation of flex assemblies using SolidWorks 3-D printed "Paper doll" outline mockups for physical assembly fit checks with copper clad Kapton to simulate actual flexibility Incorporation of customer-supplied wiring diagram and chassis information in laser-cut mechanical samples

> > Example solidworks and 3-D paper doll prototype mockups produced by Glenair's Integrated Flex Assembly production laboratory—typical turnaround 2-3 days upon receipt of request

RUGGEDIZED · HARSH-ENVIRONMENT Application / Design Options

RUGGEDIZED · HARSH-ENVIRONMENT **Application / Design Options** Packaging for optimal form, fit, and function


FLEX AND RIGID FLEX DESIGN OPTIONS

Selective bonding of discrete layers of flex circuitry

Factory forming facilitates assembly and helps the flex circuit adhere tightly to available space and routing


Hybrid flex, rigid flex, and embedded PCB technology facilitates electronic component size and weight reduction, and double-sided mounting of components

Stiffeners incorporated into flex: a practical approach for adding discrete mount points or component integration

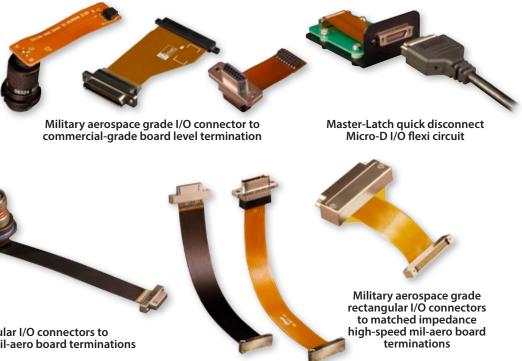
EMI/RFI Shielding in flex circuitry is accomplished with solid or patterned shield planes and/or with shielded I/O interconnects

Flex and rigid flex combination assemblies provide hard mounting points and dynamic flexing and routing

MULTIBRANCH FLEX AND RIGID FLEX CONNECTORIZED ASSEMBLIES Micro-D subminiature multibranch flex Multibranch RJ45 / Ethernet / USB Flex

assembly-a Glenair specialty.

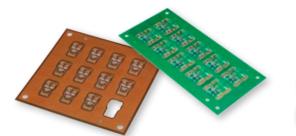
10


assembly

High density .025" contact center nanominiature multibranch flex assembly

© 2017 Glenair, Inc • 1211 Air Way, Glendale, CA 91201 • 818-247-6000 • www.glenair.com • U.S. CAGE code 06324 • Integrated PCB/Flex Assemblies Dimensions in Inches (millimeters) are subject to change without notice.

POINT-TO-POINT CONNECTORIZED FLEX AND RIGID FLEX JUMPER DESIGN OPTIONS



Environmentally sealed rectangular I/O interface flexi circuit

Military aerospace grade circular I/O connectors to matched impedance high-speed mil-aero board terminations

SPECIAL-PURPOSE FLEX AND RIGID-FLEX DESIGN OPTIONS

Production run of individual PCBs in panelized form

Dual-gang series 20 Super-Twin[™] I/O connector to AlphaLink SL PCB connector

© 2017 Glenair, Inc • 1211 Air Way, Glendale, CA 91201 • 818-247-6000 • www.glenair.com • U.S. CAGE code 06324 • Integrated PCB/Flex Assemblies Dimensions in Inches (millimeters) are subject to change without notice.

Space-grade Series 28 HiPer-D to Series 80 Mighty Mouse I/O jumper

Stacked Micro-D I/O connectors with flex jumper to rigid PCB assembly

High-shock matched-impedance Mighty Mouse assembly with flex circuit

EMI/RFI filtered power transmission flexi circuit assembly

TURNKEY **PCB/Flex Circuit Assemblies**

Interconnect I/O and termination design guide

straight and 90° PC tail

ree-standing

plugs and

receptacles

niniature

dual-row right

angle PCB plugs /

receptacles

TURNKEY **PCB/Flex Circuit Assemblies** Interconnect I/O and termination design guide

COMPATIBLE

First step in securing a price and delivery quote from Glenair is to communicate basic information regarding the flex assembly, including quantity requirements, number of layers, overall size, special features such as factory forming, stiffeners and so on. Accordingly, here is a five step flex design guide, beginning with I/O interconnect selection.

straight and 90° PC tail

panel plugs and

receptacles

single-row vertical PCB

plugs / receptacles

spacing mil-aero grade nanominiature

Series 79 Micro-Crimp is Glenair's high-density .075" contact

Series 89 (MIL-DTL-32139) ultra high-density .025" contact

Ultra high density .075" contact center mil-aero solution for

MICROCR

🗤 nano

center crimp-contact, mil-aero grade rectangular

Note: all Glenair PCB I/O connectors are potted/sealed and certified parylene compatible.

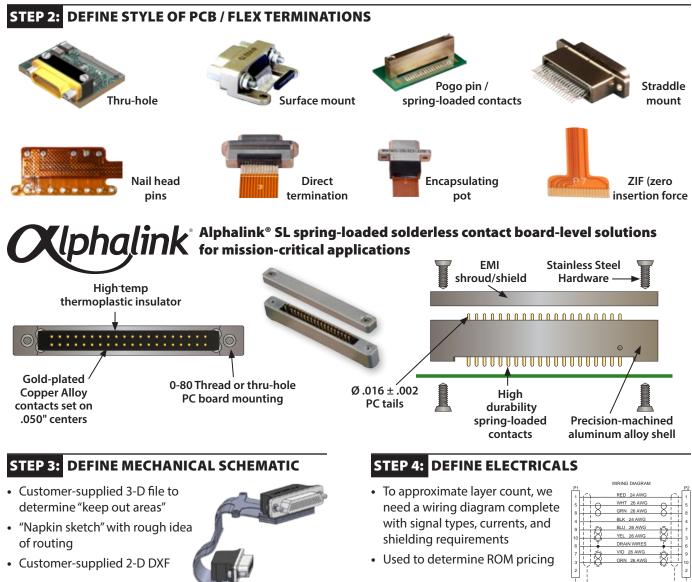
STEP 1: SELECT FLEX/RIGID FLEX ASSEMBLY I/O CONNECTOR(S)

HiPer-D 24308 is a high-performance, precision machined, shielded alternative to commercial-grade D-subminiatures

HiPer-D 24308

Series MWDM (MIL-DTL-83513) high-density microminiature .050" contact spacing mil-aero grade Micro-D subs

MICRO-D



vertical and 90° thru-hole mount

SuperNine "better than QPL" advanced performance D38999 Series III type connectors

© 2017 Glenair, Inc • 1211 Air Way, Glendale, CA 91201 • 818-247-6000 • www.glenair.com • U.S. CAGE code 06324 • Integrated PCB/Flex Assemblies Dimensions in Inches (millimeters) are subject to change without notice. The termination of flex and rigid flex assemblies to backplane and motherboard PCBs may be accomplished with a variety of interconnect technologies and flex design features. Glenair flex engineers have deep fluency in the maintenance and protection of signal continuity from the I/O interface to the board, including high-speed, matched impedance signal management, EMI/ RFI shielding and so on.

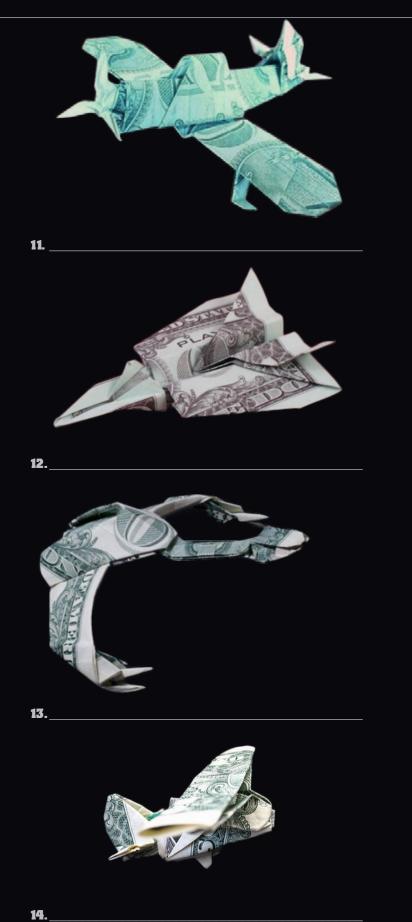
STEP 5: DEFINE VALIDATION TEST REQUIREMENTS

Glenair offers complete circuit design and generation of PCB/flex fabrication data packages including component level documentation. Most flex customers specify a certain level of validation testing as a required part of the documentation package. Tests may include DWV/IR, continuity, impedance (eye pattern), and others.

Dimensions in Inches (millimeters) are subject to change without notice.

12

Plane Spotting



10.

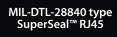
QwikConnect - January 2017

Answers published February 15th • www.glenair.com/qwikconnect

RUGGEDIZED **HIGH-SPEED DATALINK** INTERCONNECTS

contacts \cdot connectors \cdot jumpers

SUPERSEAL[™] IP67 OPEN-FACE RUGGEDIZED FIELD RJ45 SOLUTIONS



MIL-DTL-38999 Sr. III type Series 80 Mighty Mouse SuperSeal™ RJ45 SuperSeal™ RJ45

Series ITS 5015 type SuperSeal™ RJ45

SUPERSEAL[™] IP67 OPEN-FACE RUGGEDIZED FIELD USB SOLUTIONS

MIL-DTL-38999 Sr. III type Series 80 Mighty Mouse SuperSeal[™] USB SuperSeal[™] USB

Series ITS 5015 type SuperSeal™ USB

MIL-DTL-28840 type SuperSeal™ USB

© 2017 Glenair, Inc • 1211 Air Way, Glendale, CA 91201 • 818-247-6000 • www.glenair.com • U.S. CAGE code 06324 • QwikConnect Jan. 2017

© 2017 Glenair, Inc • 1211 Air Way, Glendale, CA 91201 • 818-247-6000 • www.glenair.com • U.S. CAGE code 06324 • QwikConnect Jan. 2017

Coming Soon SuperSeal[™] **RJ45 CAT 6a ETHERNET** CONNECTORS

RJ45 Cat 6a MIL-DTL-38999 Series III Type Wall-Mount **Receptacle and Plug**

High performance, proven reliability environmental connectors housing RJ45 interfaces for mission-critical data transfer applications

Superior sealing—IP67 minimum in unmated condition—for complete system protection against harsh elements

RJ45/USE

- Advanced thru-coupler grounding for superior electrostatic discharge and EMC
- Crimp, solder-cup, PC tail, guadrax, and compliant pin contact variations
- Scoop proof, self-locking, triple-start threaded coupling design of MIL-DTL-38999 Series III type connectors
- RJ45 cordsets with multiple length options available
- Integrated banding platform options for easy cable termination and EMI/RFI shielding
- Optional spring loaded protective covers for sand, dust, and mechanical protection of iunction boxes and switches
- RJ45 plug and/or jack interfaces
- High Data Transfer Rates: 10GBase

COMING SOON SuperSeal[™] RJ45 Cat 6A Ethernet Connectors Test data · product specifications

Te		SuperSeal MIL-DTL-38999 Series III RJ45				Procedure Per MIL-DTL-38999 and			
Descri	ption	Performance Requirements/Specifications				TIA/EIS-568-B.2			
Cont Resist		Connecting hardware shall conform to A.2; a thru c of TIA/EIA-568-B.2 per IEC 60512-2, Test Method 2A, millivolt level method (shall not exceed 0.025 ohms and 0.050 ohms during subsequent tests					TIA/EIA-568-B.2, Section A.2 IAW IEC 60512-2, Test method 2A		
Insula Resist		Per IEC 60512-2, Test 3a, Method C, test voltage 500 VDC (Insulation Resistance minimum of 100 Ohm)					IAW IEC 60512-2, Test Method 2A		
Mati Durat	5	500 to 1000 cycles (finish dependent) with no mechanical damage. Contact Resistance requirement as described above shall be met at 0.050 ohms after 100, 200 and 250 cycles (and 500 per finish). This shall be performed before Thermal Shock and Humidity/ Temperature cycling test and the additional 250 cycles shall be testing after completion in the same manner.					4.5.8 IAW TIA/EIA-568-B.2		
Cont Reten		Indiv	idual contacts capable of	withstanding at least 10 pounds axial load ap	plied unifo	ormly 1 lb/sec	IAW EIA-364-29		
Vibra	ation	Per MIL-DTL-38999 Series III Condition VI Letter J; Sine: 10 to 2,000 Hz each of three mutually 3.27 perpendicular axis total of 36 hours (4 hours each ambient, -40°C and +85°C temperatures) Random: 3.27 43.9 rms g's random vibration 16 hours (8 hours longitudinal and perpendicular direction). No Sine 4.5.23.3 & 4.5.23.4 Random 4.5.23.1 IAW EIA-364-28					3 & 4.5.23.4		
Sho	ock	100 mA max with no discontinuities excess of 1 microsecond. Standard: Per EIA-364-27 – half sine 4.5 100 mA max with no discontinuities excess of 1 microsecond. Standard: Per EIA-364-27 – half sine 1.5 IAW EIA-364-27 IAW MIL S 901, Grade A.					-364-27		
Thermal	l Shock	Per IEC 60068-2-14 Test Number Nb. • Temperature range -40 - +85°C ± 2°C • Exposure Time: 30 min. • TIA/EIA-568-B.2, A.7 Number of Cycles: 100 • Test Group B contacts shall be inspected and contact resistance measured after 50 cycles and at completion of est. These specimens shall be used for humidity/thermal cycling testing. TIA/EIA-568-B.2, A.7						58-2-14, Test	
Humie Temper Cycli	rature	lemperature for step 1 shall be -45 +()/-5% • lemperature for step 3 shall be 85 +5/-()% $ $ temperature exceptions					Method IV with exceptions; 2, Test cond. A; 58-2-14, Test		
Salt S	pray	5% solution, 34°-36°C. 48-1000 hours, depending on finish. Unmated connectors show no lifting of plated coating or exposure of basis material under 3X magnification which adversely affects performance.							
Water Im	er Immersion 1 Meter for 1 hour, Unmated			MIL-STD-810 method 512					
EMI Shi	elding	Per IEC 60603-7, 1 MHz to 1000 MHz with effectiveness of 22 dB.					4.5.28 EIA-364-66		
Fluid Res	sistance	Per EIA-364-10 unmated connector shall not experience any damage detrimental to performance after immersion in fluid.					4.5.30 IAW EIA-364-10		
MIL-DTL-38999 Connector and Cable Assembly Material and Finish Codes									
Code	Mater	ial	Finish	Finish Specification	Hrs. Salt Spray	Electrical Conductivity	Operating Temp. Range	RoHS Compliance	
ME	Aluminum		Electroless Nickel	SAE AMS-C-26074	96	Yes	-65° to +200°C	Yes	
MT			Nickel PTFE	SAE AMS2454	500	Yes	-65° to +200°C	Yes	
NF			Cadmium, Olive Drab	SAE-AMS-QQ-P-416	500	Yes	-65 to +175°C	No	

MIL-DTL-38999 Connector and Cable Assembly Material and Finish Codes							
Code	Material	Finish	Finish Specification	Hrs. Salt Spray	Electrical Conductivity	Operating Temp. Range	RoHS Complian
ME		Electroless Nickel	SAE AMS-C-26074	96	Yes	-65° to +200°C	Yes
MT	Aluminum	Nickel PTFE	SAE AMS2454	500	Yes	-65° to +200°C	Yes
NF		Cadmium, Olive Drab	SAE-AMS-QQ-P-416	500	Yes	-65 to +175°C	No
ZR		Zinc-Nickel, Black	ASTM B841	500	Yes	-65 to +175°C	Yes

MIL-DTL-38999 RJ45 Cat6a Electrical Specs for Plug & Receptacle			
Rating	Category 6a		
Data rate	10GBase		
Voltage rating	1000 Volts		
Current rating	1.5 Amps (max)		
Frequency	500 MHz (max)		
Wiring	Straight through		
Shield continuity	Continuous thru-coupler		
Cable length	100 M (max)		

© 2017 Glenair, Inc • 1211 Air Way, Glendale, CA 91201 • 818-247-6000 • www.glenair.com • U.S. CAGE code 06324

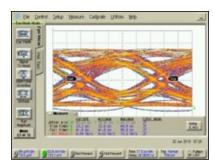
HIGH-SPEED USB 3.0 SuperSeal

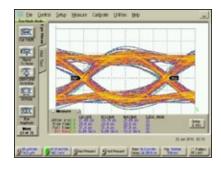
Coming Soon!

100 OHM **Equalizer High-Speed Micro-D**

for improved signal integrity

SuperSeal[™] **USB 3.0 connectors**

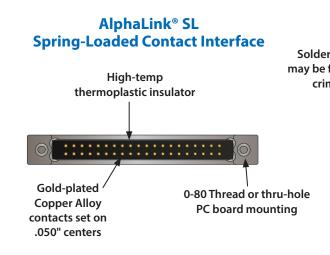

The latest version of the Universal Serial Bus (USB) standard for interfacing computers and electronic devices sees a significant speed increase over the previous standard. The USB 2.0 standard offers a theoretical maximum signaling rate of 480 megabits per second, while USB 3.0 defines a maximum rate of 5 gigabits per second, more than ten times faster than USB 2.0. To achieve this, one-way communication on USB 2.0 has been dropped. USB 3.0 uses two unidirectional data paths, one to receive data and the other to transmit. USB 3.0 also provides up to 900mA of power when needed and better power management helps to conserve power when connected devices sit idle. High-sealing against fluids and dust for harsh environments with 1P67 rated sealing in an unmated condition and IP68 rated when mated, as well as improved EMI/RFI, shock and vibration protection. Scheduled for release across the following connector types: 38999, 5015, 26482 and Mighty Mouse. Glenair is commited to offering a range of connector termination options and high-speed solutions to meet the demanding communication requirements in harsh environment conditions.


- USB 3.0 protocol
- High-speed data transmission rate of up to 5Gb/s
- High sealing capability, IP67 rated in unmated condition. 1P68 rated in mated condition
- Planned roll-out across all SuperSeal[™] product form factors including 38999 type, 5015 type, 26482 type and Mighty Mouse Series 801, 804 and 805
- In development now: USB 3.0 repeater / signal booster for extended distance applications

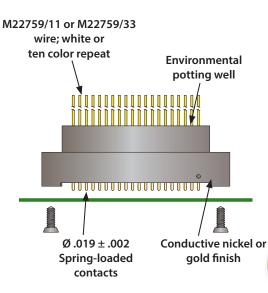
Equalizer **High-Speed Micro-D**

Compensates for cable-induced losses in high-frequency/high-speed I/O-to-board applications

A new Glenair high-speed technology (test reports and sales drawings available Q1 2017), incorporating small form-factor passive board electronics that improve signal performance to achieve 10Gb/s per differential pair. The equalizer provides a scalable, matched-impedance right angle transition to the board packaged in a standard CBR style Micro-D. Integrated Equalizer technology compensates for transmission losses in printed circuit boards and cables. Technology relies on 100% passive components with no power supply required, and operates from 10Gb/s to 12Gb/s. Available initially in Micro-D packaging, the Equalizer may also be scaled for other small form-factor rectangular connectors such as the Series 79 Micro-Crimp.


Eye patterns for one channel Micro-D mated pair carrying 10 Gb LVDS Standard construction Micro-D PCB on left, and Equalizer Micro-D on right

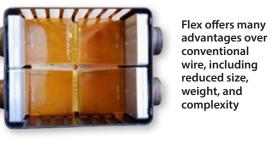
Equalizer HIGH-SPEED MICRO-D



- Micro-D PCB plus cordsets with matching differential pair configurations
- Designed for any 100 Ohm application (Ethernet, SATA, LVDS, CML, and so on)
- Passively equalized differential pairs
- Requires no power supply
- Improves signal integrity for 100 Ohm differential impedance
- Same mating interface, same contacts, same performance as standard Micro-D

SERIES 171 ALPHALINK[®] SL **Spring-loaded board level connector Design features**

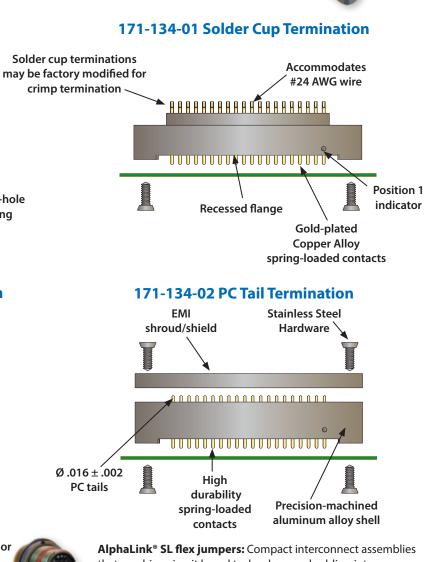
171-134-03 Wire Pigtail Termination


AlphaLink® SL spring-loaded contact PC board connectors deliver up to 50% footprint savings versus conventional 2mm pitch solutions. PC tail equipped connectors, the 171-134-02, are supplied with an EMI shroud / shield for improved EMC compared to low-cost plastic board connectors. All connector styles incorporate a high-reliability springloaded contact that delivers a virtually unlimited number of mating cycles. Connectors are typically mated to the PC board using conductive pads or via's. Stainless steel mounting hardware provides a robust, vibration-resistant attachment solution compared to stamped-and-formed retention barbs.

SERIES 171 Aphalink

Board-level spring-loaded-contact connectors and turnkey flex jumpers

IphaLink® SL is a high-performance, solderless board-level connector technology Adeveloped by Glenair that significantly expands board-level interconnection options for users of mil-spec caliber connectors. Precision-machined and EMI shielded, these ultralightweight PC tail, solder cup, and/or pigtail equipped connectors are designed for high-reliability applications that require avionic system levels of vibration and shock tolerance. Ultra low-profile and high-density, AlphaLink® SL connectors are equipped with 2-3 Amp spring-loaded contacts and may be ordered either as discrete connectors or in turnkey flex jumpers that combine popular Glenair high-reliability I/O connectors. Glenair is perfectly positioned to provide the entire solution with in-house manufacturing for every component part—from connectors and contacts to rugged polyimide-based flex. AlphaLink[®] SL flex jumpers are available with Series 80 Mighty Mouse, Series 88 SuperFly, and Series 89 nanominiature circular connectors, as well as Series 89 nanominiature, Micro-D subminiature and Series 79 Micro-Crimp rectangular connectors. A wide range of insert arrangements, from 4-40 contacts is available.


Spring-loaded, solderless board-level connector solution

- PC tail and solder cup versions offer easy termination to flex or wire
- Available turnkey I/O to board flex and pigtail wire jumpers
- Lightweight and lowprofile—up to 40% space savings compared to **2mm pitch solutions**
- High-density .050" center-to-center contact footprint
- Fast and easy PC board integration with reduced board preparation and masking
- Withstands temperature, vibration and shock extremes

© 2017 Glenair, Inc • 1211 Air Way, Glendale, CA 91201 • 818-247-6000 • www.glenair.com • U.S. CAGE code 06324

weight, and

complexity

that combine circuit board technology and cabling into a lightweight, integrated package. These turnkey jumper assemblies reduce system size and weight and are ideally suited for prototype applications and new product development efforts.

For more information contact Glenair at 818-247-6000 or visit our website at www.glenair.com U.S. CAGE code 06324

PARYLENE-COMPATIBLE **Circular and Rectangular PC Tail Connectors**

Environmental and Hermetic

SERIES 80 MIGHTY MOUSE POTTED/SEALED PCB CONNECTORS

805-011

right-angle receptacle

805-005 **Epoxy-potted receptacle**

NANOMINIATURE 32139 TYPE POTTED/SEALED PCB CONNECTORS

893-009

threaded straight

893-008 breakaway straight

893-010 breakaway right-angle

MIL-DTL-83513 MICRO-D PCB CONNECTORS

MWDM-BS vertical mount thru-hole PCB connector

condensed PCB connector

SERIES 28 HiPer-D M24308 STANDARD AND HIGH-DENSITY PCB CONNECTORS

280-022 straight PC tail pin connector

280-023 straight PC tail socket connector

SERIES 28 HiPer-D M24308 COMBO-D PCB

280-054 combo straight PC tail pin connector, low-profile

280-055 combo straight PC tail socket connector, low-profile

© 2017 Glenair, Inc • 1211 Air Way, Glendale, CA 91201 • 818-247-6000 • www.glenair.com • U.S. CAGE code 06324

Darylene conformal coating protects PCBs against moisture, contaminants and corrosion, ensuring a longer electronic system life cycle. During the vapor deposition process (which takes place under vacuum), parylene will penetrate and coat all unprotected surfaces of PCB connectors if not effectively sealed, potentially resulting in increased resistance or other electrical problems. The use of temperature, shock, and vibration-tolerant epoxy potting (environmental) or glass-to-metal (hermetic) sealing on PCB connectors prevents parylene ingress into the component. All Glenair PCB connectors presented in this selection guide have been tested and gualified for compatibility (sealing and ingress protection) with parylene conformal coating processes.

SUPERNINE® D38999 SERIES III POTTED/SEALED PCB CONNECTORS

233-207

233-208

233-210

233-209

Non-parvlene-compatible PCB

connector. Resilient rubber seal

is wholly inadequate to the task

of sealing internal / conductive

connector components during

parylene vacuum deposition process.

Parylene-compatible PCB connector.

Encapsulant potting material

fully seals internal components of

connector during parylene vacuum

deposition process.

Contra and

257-859 PCB receptacle with compliant pin contacts

© 2017 Glenair, Inc • 1211 Air Way, Glendale, CA 91201 • 818-247-6000 • www.glenair.com • U.S. CAGE code 06324

8070-1444 805 series dual-flange

SUPERSEAL RJ45/USB PCB

233-302 805-342 D38999 RJ45 jack receptacle Mighty Mouse USB receptacle

893-011 threaded right-angle

SERIES 88 SUPERFLY PCB

881-019R threaded vertical receptacle

881-020R threaded right-angle receptacle

MIL-DTL-32139 NANOMINIATURE PCB

890-006/-007 single-row vertical PCB plugs / receptacles

890-008/-009 single-row right angle PCB plugs / receptacles

891-006/-007 dual-row vertical PCB plugs / receptacles

280-024 right-angle PC tail pin connector

280-025 right-angle PC tail socket connector

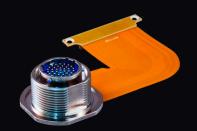
280-026 straight PC tail pin connector, low-profile

SERIES 79 MICRO-CRIMP PCB CONNECTORS

790-028 straight PC tail panel receptacle


790-029 straight PC tail panel plug

⁸⁰⁵⁻⁰⁶⁷ square flange jam nut receptacle

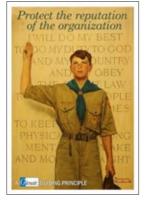

Integrated PCB/Flex Assembly Production Lab

GLENDALE, CALIFORNIA

IPC 6012/6013 Class I, II, III, types 1–4 ISO 9001, AS9100 Certified

Glenair Integrated PCB/Flex assembly production facilities are operated in accordance with commercial and military standards. Staff includes 200+ PCB and cable assemblers with Nadcap certification for special processes and ESD management.

Glenair's PCB/Flex interconnect team is housed together under one roof. From electrical design to computer-aided manufacturing and assembly, the team has a well-deserved reputation for on-time delivery of even the most complex PCB/ Flex assemblies.



© 2017 Glenair, Inc • 1211 Air Way, Glendale, CA 91201 • 818-247-6000 • www.glenair.com • U.S. CAGE code 06324 • QwikConnect Jan. 2017

Outlook

Why the Boy Scout?

We had a visitor to the factory this past week who was intrigued with our Glenair Guiding Principles. Regular readers of *QwikConnect* will know that we take these principles seriously, as they have been instrumental to our now sixty-plus years of success in the highreliability interconnect industry. Anyway, this visitor, a customer, was keenly interested in our first and foremost principle to "protect the reputation of the organization"; in particular why we had chosen a Boy

Scout to illustrate the point in the poster on the wall. I explained that Norman Rockwell's Boy Scout was, in our view, the perfect symbol to convey the dedication and duty we expect at Glenair when it comes to ethical behavior in the workplace. I went on to say that in our "quaint" way of doing things, we prefer not to burden folks with a long list of rules. Instead—much like the scouts—we strive to communicate the values and principles we hold dear and trust our colleagues to join us in their application.

Well, you should have seen him smile. A life-long scout, he was visibly proud to see the organization's reach had extended into our company culture in such a meaningful way. And truth be told, our walking tour of the factory paused at that poster for a solid half hour as we talked about leadership, citizenship, duty, and other scouting principles that we both agreed are relevant in today's business world. On the topic of leadership, we discussed how effective leadership begins with "follow ship"—or the practice of giving everything you have as a regular team member that ultimately prepares you for the role of leading teams yourself. And as is natural for a supplier and customer, we talked a bit about customer service. Specifically, we agreed that the Boy Scout Law (which he of course knew by heart: trustworthy, loyal, helpful, friendly, courteous, kind, etc.) would make a great foundation for outstanding customer service in any organization that took the task seriously.

An observation about Glenair bears on this point: every group in our organization has a customer service aspect to its work. From inside sales, to field application engineering, quality, production, inventory-control—you name it—we all have internal and external customers. At the risk of beating the same old drum, I'm proud of our team when it comes to treating all of our many customers with honest, friendly service. Sure, sometimes we slip on a banana peel (despite our best efforts) and come up short in the customer's eyes. But it has certainly been my experience that we all do a pretty good job of *protecting the reputation of the organization* when it comes to ethical and reliable service to our customers, colleagues, and suppliers. As Teddy Roosevelt once said, "The most important single ingredient in the formula for success is the knack of getting along with people." I couldn't agree more.

Ohris Torney

QwikConnect

GLENAIR • Volume 21 • Number 1

Publisher Christopher J. Toomey

Managing Editor Marcus Kaufman

Editor/Art Director Mike Borgsdorf

Editor Carl Foote

Graphic Designer George Ramirez

Technical Consultant Jim Donaldson

Issue Contributors

Deniz Armani Greg Cameron Russell Ghiselli Guido Hunziker Vinita Kakkar Ben Porcaro Chris VanSoest

Distribution

Terry White To subscribe or unsubscribe,

please contact Terry White: twhite@glenair.com

QwikConnect is published quarterly by Glenair, Inc. and printed in the U.S.A. All rights reserved. © Copyright 2017 Glenair, Inc. A complete archive of past issues of QwikConnect is available on the Internet at www.glenair.com/ qwikconnect

GLENAIR, INC. 1211 AIR WAY GLENDALE, CA 91201-2497 TEL: 818-247-6000 FAX: 818-500-9912 E-MAIL: sales@glenair.com www.glenair.com

