061-013
Medium-duty pin pushers and pullers
50 lb. pull force
Electrically redundant

ELECTRICALLY REDUNDANT PIN PULLER MECHANISM, MEDIUM DUTY

How To Order

<table>
<thead>
<tr>
<th>Sample Part No.</th>
<th>061-013-190</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Part No.</td>
<td>Medium-Duty Pin Puller</td>
</tr>
<tr>
<td>Pin Diameter/Side Load:</td>
<td>Per Table I</td>
</tr>
</tbody>
</table>

NOTES
1. Primary initiation circuit identified with “P” and redundant with “R”.
2. Pull force: 50 lbs. (222 N)
3. Baseline pin puller qualification test parameters:
 - Survive static load: 330 Lbs
 - Hold and release: 4 Lbs
 - Random vibration 28.2 GRMS
 - Shock input: 2849 Gs
 - Thermal vacuum:
 - 3 cycles -65°C to +70°C
 - 1.5 x 10^-3 Torr, actuations at each extreme
 - Thermal vacuum no fire current: .250A, 5 minutes
 - Life cycle: 5 releases (one unit)
4. Reference Glenair P/N 060-113 for refurbishment initiator
5. Threads are available on the pin if needed. Metric threads also available
6. Consult factory for additional options

Physical characteristics
- Mass: 145.8 grams approximate weight
- Material list: IAW MSFC-STD-3029

Device features
- Redundant initiation: 2 initiation points
- Field refurbishable: Initiator can be replaced in less than 15 minutes by trained personnel
- Packaging: External housing typically supplied with two mounting points. Custom housings and mountings available
- Connectorization: Standard design supplied with wire inputs. Connectorized versions available

*Size callout based on the bolt size to be used. Metric thread also available. Consult factory for qualification test report.

Part Number Definition

<table>
<thead>
<tr>
<th>Dash Number</th>
<th>“X” (Pin Ø)</th>
<th>Maximum Static Side Load (LBS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-190</td>
<td>.190</td>
<td>330</td>
</tr>
<tr>
<td>-375</td>
<td>.375</td>
<td>1200</td>
</tr>
</tbody>
</table>
061-013
Medium-duty pin pushers and pullers
50 lb. pull force, electrically redundant

Actuation Curve for Pin Puller Mechanism

Actuation Time (Milliseconds) vs. Actuation Current (Amps)