

Revision B

Glenair, Inc. 1211 Air Way · Glendale, California 91201-2497 Telephone: 818-247-6000 · Facsimile: 818-500-9912 E-mail: sales@glenair.com United States · United Kingdom · Germany · France · Nordic · Italy www.glenair.com

Cage Code: 06324	HD Stacker Qualification	Document #: GT-17-221 Revision: B Page 1 of 55
U	HD Stacker Qualification	Revision: B Page 1 of 55

List of Tables

Table 1: Report Revision History	3
Table 2: Test Sample Identification	6
Table 3: Test Groups and Order of Testing	7
Table 4: Visual Inspection Test Equipment	
Table 5: Contact Engagement and Separation Forces Testing Equipment	
Table 6: .022" (+) Gauge Pin Results in lb	
Table 7: .023" (-) Gauge Pin Results in lb	. 11
Table 8: .020" (+) Gauge Pin Results in lb	11
Table 9: Contact Retention Testing Equipment	. 13
Table 10: Contact Retention Testing Results	
Table 11: DWV at Altitude Test Equipment	
Table 12: Contact Compliant Mating Forces Test Equipment	. 17
Table 13: Contact Compliance Mating Forces Results	
Table 14: Contact Life Test Equipment	20
Table 15: Mating and Unmating Force Test Equipment	. 22
Table 16: Pre Vibration and Shock Mating and Unmating Force Results	. 22
Table 17: Low Level Contact Resistance Test Equipment	
Table 18: Pre Vibration and Shock Low Level Contact Resistance Results	
Table 19: Vibration Test Equipment	
Table 20: Mechanical Shock Test Equipment	
Table 21: Low Level Contact Resistance Test Equipment	
Table 22: Post Vibration and Shock Low Level Contact Resistance Results	
Table 23: Mating and Unmating Force Test Equipment	
Table 24: Post Vibration and Shock Mating and Unmating Force	
Table 25: Contact Compliant Forces Test Equipment	
Table 26: Contact Compliance Mating Forces Results	
Table 27: DWV at Sea Level Test Equipment	
Table 28: Insulation Resistance Test Equipment	
Table 29: Temperature Cycling Test Equipment	. 40
Table 30: Contact Resistance Testing Equipment	
Table 31: Post Thermal Shock Contact Resistance Results	
Table 32: Humidity Exposure Testing Equipment	
Table 33: Insulation Resistance Test Equipment	
Table 34: Contact Resistance Test Equipment	48
Table 35: Post Humidity Exposure Contact Resistance Results	. 48
Table 36: Low Level Contact Resistance Test Equipment	49
Table 37: Low Level Contact Resistance Results	
Table 38: Post Humidity Mating and Unmating Force Results	. 50
Table 39: Post Humidity Mating and Unmating Force Results	. 50
Table 40: Contact Compliant Removal Forces Test Equipment	
Table 41: Contact Compliant Removal Forces Results	. 52

Caga Cada:		Document #: GT-17-221
Cage Code:	HD Stacker Qualification	Revision: B
06324		

List of Figures

Figure 1: Drawing of Test Sample	5
Figure 2: Stacker Mated Pair from Group 1	6
Figure 3: Example of Initial Picture of Sample 1A at 10x Magnification	
Figure 4: Example of Initial Picture of Sample 2A at 10x Magnification	9
Figure 5: Example of Contact Engagement and Separation Test Setup	12
Figure 6: Example of Contact Retention Test Setup	
Figure 7: Stacker Sample Ready for DWV at Altitude in Chamber	16
Figure 8: PCB Mating Force for Samples 1A and 2A	
Figure 9: Samples shown with PCB boards installed	19
Figure 10: Contact Life Testing Setup	21
Figure 11: Sample 2A-1A Mating and Unmating Force Pre Vibration and Shock	23
Figure 12: Stacker Connector Sample during Low Level Resistance Testing	25
Figure 13: Vibration Profile	27
Figure 14: Vibration Shaker and Discontinuity Tester Setup	28
Figure 15: Close up of Stacker Vibration Fixture	28
Figure 16: Terminal Sawtooth Shock in Positive Direction	30
Figure 17: Terminal Sawtooth Shock in Negative Direction	30
Figure 18: Sample 2A-1A Mating and Unmating Force Post Vibration and Shock	34
Figure 19: Contact Compliant Mating Forces of Sample 1B and 2B	36
Figure 20: Stacker Test Sample Attached to Adapter for DWV Testing	38
Figure 21: Thermal Shock Temperature Profile	40
Figure 22: Samples Read for Thermal Shock Testing	41
Figure 23: A Single Cycle of Humidity Exposure Testing	45
Figure 24: Samples 2A and 2B ready for Humidity Exposure Testing	
Figure 25: Small Amount of Discoloration Visible on Sample Contacts	46
Figure 26: Sample 2B-1B Post Humidity Mating and Unmating Force Trace	51
Figure 27: PCB Dismounting Force for Sample 2B	53
Figure 28: PCB Dismounting Fixture	54
Figure 29: Dismount Complete	54

Cage Code:		Document #: GT-17-221
0	HD Stacker Qualification	Revision: B
06324	-	Page 3 of 55

Table 1: Report Revision History

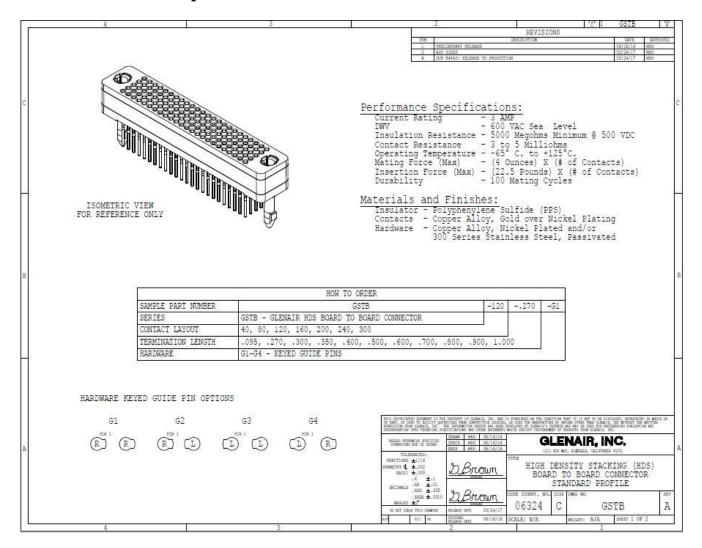
Revision	Date	Approved	Description
А	11/01/17	S. Peeling	Initial Release
В	11/16/23	K. Howerton	Correct Title and Max Temp

1.0 Summary of Testing

All testing in this report is performed in accordance with test plan "Mini-Qual Test Plan (STACKER) based on MIL-DTL-55302G". The testing is divided into two test groups with each group consisting of a pair of mating Stacker connectors. Group 1 focuses on mechanical testing such as Vibration and Shock. Group 2 focuses on environmental testing such as Thermal Shock and Humidity Exposure. All testing was performed on Glenair owned and operated equipment. All samples underwent testing in accordance with their associated specifications and no failures or deviations of testing were witnessed at any time. Please see Table 4 for a description of each group and the order of testing. All test results are included in sections 4 and 5.

Cage Code: 06324	HD Stacker Qualification	Document #: GT-17-221 Revision: B
00324		Page 4 of 55

2.0 General Information


2.1 References

- Mini-Qual Test Plan (STACKER) based on MIL-DTL-55302G
- MIL-DTL-55302G Connectors, Printed Circuit Subassembly and Accessories
- EIA-364-37 Contact Engagement and Separation Test Procedure for Electrical Connectors
- EIA-364-29 Contact Retention Test Procedure for Electrical Connectors
- EIA-364-20 Withstanding Voltage Test Procedure for Electrical Connectors, Sockets and Coaxial Contacts
- EIA-364-23 Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets
- EIA-364-28 Vibration Test Procedure for Electrical Connectors and Sockets
- EIA-364-27 Mechanical Shock (Specified Pulse) Test Procedure for Electrical Connectors and Sockets
- EIA-364-21 Insulation Resistance Test Procedure for Electrical Connectors, Sockets and Coaxial Contacts
- EIA-364-32 Thermal Shock (Temperature Cycling) Test Procedure for Electrical Connectors and Sockets
- EIA-364-06 Contact Resistance Test Procedure for Electrical Connectors
- EIA-364-31 Humidity Test Procedure for Electrical Connectors and Sockets

Cage Code:	HD Stacker Qualification	Document #: GT-17-221 Revision: B
06324		Page 5 of 55

2.2 Test Samples

Figure 1: Drawing of Test Sample

Cage Code: 06324 HD Stacker Qualification	Document #: GT-17-221 Revision: B Page 6 of 55
--	--

Figure 2: Stacker Mated Pair from Group 1

Group Number	Sample Part Number	Description	Sample Label
1	GSTB-120270-G1	120 Pin "Stacker" Connector	1A
1	GSTB-120270-G1	120 Pin "Stacker" Connector	2A
2	GSTB-120270-G1	120 Pin "Stacker" Connector	1B
2	GSTB-120270-G1	120 Pin "Stacker" Connector	2B

Cago Codo:		Document #: GT-17-221
Cage Code:	HD Stacker Qualification	Revision: B
06324		Page 7 of 55

3.0 Test Sequence

Test Description	Group 1	Group 2
Visual Inspection	X	Х
Contact Engagement and Separation Forces	X	
Contact Retention	Х	
DWV at Altitude	X	
Contact Compliant Mating Forces	X	Х
Contact Life	X	
Mating and Unmating Force	X	
Low Level Contact Resistance	X	
Vibration	X	
Shock	X	
DWV at Sea Level		Х
Insulation Resistance		Х
Temperature Cycling		Х
Contact Resistance		Х
Humidity Exposure		Х
Insulation Resistance		Х
Contact Resistance		Х
Low Level Contact Resistance	X	Х
Mating and Unmating Force	X	Х
Contact Compliant Removal Forces		Х

Table 3: Test Groups and Order of Testing

Caga Cada		Document #: GT-17-221
Cage Code:	HD Stacker Qualification	Revision: B
06324		Page 8 of 55

4.0 Group 1 Testing

4.1 Visual Inspection

4.1.1 References

• Mini-Qual Test Plan (STACKER) based on MIL-DTL-55302G

4.1.2 Test Equipment

Table 4: Visual Inspection Test Equipment

Manufacturer	Model Number	Description
Celestron	44308	Digital Microscope

4.1.3 Test Method and Setup

Samples were inspected at 10X magnification under a digital microscope. All parts of the sample were documented.

4.1.4 Test Results

Samples 1A and 2A were found to be in good working order with no obvious damage or defects that would hinder their operation or performance. All of these pictures are archived so they may be compared to the test samples at the conclusion of testing if required.

4.1.5 Deviation of Test

No Deviations of Testing were recorded during Visual Examination.

Cage Code:		Document #: GT-17-221	
U	HD Stacker Qualification	Revision: B	
06324		Page 9 of 55	

4.1.6 Photographs

Figure 3: Example of Initial Picture of Sample 1A at 10x Magnification

Figure 4: Example of Initial Picture of Sample 2A at 10x Magnification

Cage Code:		Document #: GT-17-221	
0	HD Stacker Qualification	Revision: B	ĺ
06324		Page 10 of 55	

4.2 Contact Engagement and Separation Forces

4.2.1 References

- Mini-Qual Test Plan (STACKER) based on MIL-DTL-55302G
- MIL-DTL-55302G Connectors, Printed Circuit Subassembly and Accessories
- EIA-364-37 Contact Engagement and Separation Test Procedure for Electrical Connectors

4.2.2 Test Equipment

Table 5: Contact Engagement and Separation Forces Testing Equipment

Manufacturer	Model Number	Description
Chatillon	DFGS-R-ND, 363-D3-50-0031	50 lb load cell
Meyer	.022 (+) and .023 (-) and .020 (+)	Assorted Gauge Pins

4.2.3 Test Method and Setup

Samples 1A and 2A were mounted in a vice fixture and Glenair specified gauge pins were inserted and extracted into 7 different contacts. The maximum force for the insertion and extraction of each female contact was recorded and reported in the tables below.

Caga Cada:		Document #: GT-17-221	ĺ
Cage Code:	HD Stacker Qualification	Revision: B	ĺ
06324		Page 11 of 55	ĺ

4.2.4 Test Results

All testing was conducted in accordance with the specifications in section 4.2.1 above.

Sample Number	Contact #1	Contact #2	Contact #3	Contact #4	Contact #5	Contact #6	Contact #7
1A Engage	.10	.22	.18	.24	.23	.20	.22
2A Engage	.16	.20	.12	.16	.18	.20	.18

Table 7: .023" (-) Gauge Pin Results in lb

Sample Number	Contact #8	Contact #9	Contact #10	Contact #11	Contact #12	Contact #13	Contact #14
1A Engage	.18	.18	.20	.14	.22	.26	.24
2A Engage	.16	.18	.18	.20	.14	.18	.16

Table 8: .020" (+) Gauge Pin Results in lb

Sample Number	Contact #8	Contact #9	Contact #10	Contact #11	Contact #12	Contact #13	Contact #14
1A Separation	.14	.12	.10	.12	.12	.10	.12
2A Separation	.12	.10	.12	.14	.10	.12	.12

4.2.5 Deviation of Test

No Deviations of Testing were recorded during Contact Engagement and Separation Forces Testing.

Caga Cada		Document #: GT-17-221
Cage Code:	HD Stacker Qualification	Revision: B
06324		Page 12 of 55

4.2.6 Photographs

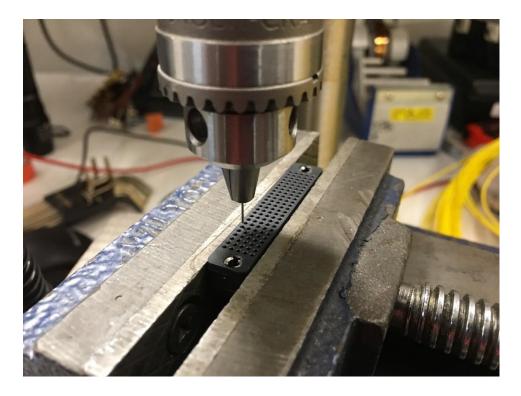


Figure 5: Example of Contact Engagement and Separation Test Setup

Cage Code:		Document #: GT-17-221
0	HD Stacker Qualification	Revision: B
06324		Page 13 of 55

4.3 Contact Retention

4.3.1 References

- Mini-Qual Test Plan (STACKER) based on MIL-DTL-55302G
- MIL-DTL-55302G Connectors, Printed Circuit Subassembly and Accessories
- EIA-364-29 Contact Retention Test Procedure for Electrical Connectors

4.3.2 Test Equipment

Table 9: Contact Retention Testing Equipment

Manufacturer	Model Number	Description
Chatillon	DFGS-R-ND, 363-D3-50-0031	50 lb load cell
Mitutoyo	CD-6" CSX	6" Calipers

4.3.3 Test Method and Setup

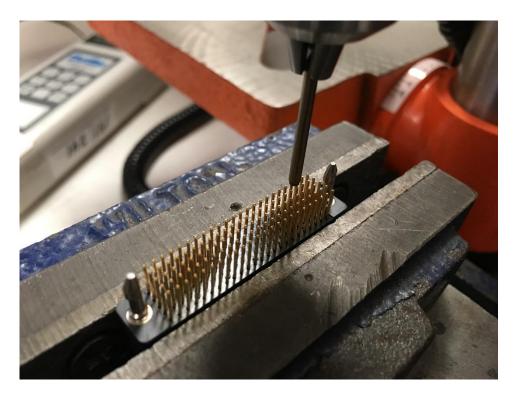
Samples 1A and 2A were mounted in a vice fixture with the male side contacts facing upward. A load of 5 lb was exerted on a single contact axially for 5 seconds. This was repeated on 7 different contacts on each test sample. Prior to and after loading a contact the height of the test sample was measured. The movement of the contact is required to be less than .015".

4.3.4 Test Results

All testing on sample 1A and 2A were conducted in accordance with the specifications in section 4.3.1 above. At no time was any contact movement post testing larger than .015". Please see table below for results.

Contact Number	Sample 1A	Sample 2A
8	< .015"	< .015"
9	< .015"	< .015"
10	< .015"	< .015"
11	< .015"	< .015"
12	< .015"	< .015"
13	< .015"	< .015"
14	< .015"	< .015"

Table 10: Contact Retention Testing Results



Cage Code:		Document #: GT-17-221
06324	HD Stacker Qualification	Revision: B
00324		Page 14 of 55

4.3.5 Deviation of Test

No Deviations of Testing were recorded during Contact Retention Testing.

4.3.6 Photographs

Figure 6: Example of Contact Retention Test Setup

Casa Cada		Document #: GT-17-221
Cage Code:	HD Stacker Qualification	Revision: B
06324		Page 15 of 55

4.4 **DWV at Altitude**

4.4.1 References

- Mini-Qual Test Plan (STACKER) based on MIL-DTL-55302G
- MIL-DTL-55302G Connectors, Printed Circuit Subassembly and Accessories
- EIA-364-20 Withstanding Voltage Test Procedure for Electrical Connectors, Sockets and Coaxial Contacts

4.4.2 Test Equipment

Table 11: DWV at Altitude Test Equipment

Manufacturer	Model Number	Description
Associated Electronics	Model 03770	Hi Pot Tester
Varian	Custom	Altitude Chamber

4.4.3 Test Method and Setup

Samples 1A and 2A were tested in accordance with EIA-364-20, Method A, Test Condition 4. This defines an altitude of 70,000 feet and a test duration of 2 minutest at 150 VAC. There cannot be a leakage current of greater than 5 milliamps at any time during the 2 minute interval. Both the electrical feedthroughs and Glenair supplied cable harness were tested independently before official testing in order to confirm any failures would be due to the Stacker sample and not the test set up.

4.4.4 Test Results

All testing on sample 1A and 2A were conducted in accordance with the specifications in section 4.3.3 above. At no time during testing was a leakage current of greater than 5 milliamps detected.

4.4.5 Deviation of Test

No Deviations of Testing were recorded during DWV at Altitude Testing.

Cage Code:		Document #: GT-17-221
U	HD Stacker Qualification	Revision: B
06324		Page 16 of 55

4.4.6 Photographs



Figure 7: Stacker Sample Ready for DWV at Altitude in Chamber.

Cage Code:		Document #: GT-17-221	ĺ
06324	HD Stacker Qualification	Revision: B	
00324		Page 17 of 55	l

4.5 Contact Compliant Mating Forces

4.5.1 References

- Mini-Qual Test Plan (STACKER) based on MIL-DTL-55302G
- MIL-DTL-55302G Connectors, Printed Circuit Subassembly and Accessories

4.5.2 Test Equipment

Table 12: Contact Compliant Mating Forces Test Equipment

Manufacturer	Model Number	Description
Instron	3366	2250 lb Tensile Tester

4.5.3 Test Method and Setup

Samples 1A and 2A were mounted onto the tensile tester using a special fixture in order to press the Stacker connector onto its PCB board. The maximum amount of force required to completely install the sample on the board is recorded and reported.

4.5.4 Test Results

 Table 13: Contact Compliance Mating Forces Results

Sample Number	Ultimate PCB Mounting Force lb
1A	1,757.08
2A	1,951.98

Cage Code:		Document #: GT-17-221
U	HD Stacker Qualification	Revision: B
06324		Page 18 of 55

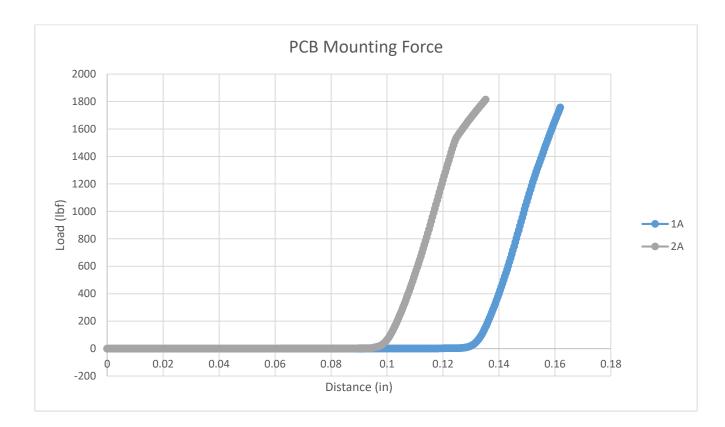


Figure 8: PCB Mating Force for Samples 1A and 2A


4.5.5 Deviation of Test

No Deviations of Testing were recorded during Contact Compliant Mating Forces Testing.

Cage Code:		Document #: GT-17-221
U	HD Stacker Qualification	Revision: B
06324		Page 19 of 55

4.5.6 Photographs

Figure 9: Samples shown with PCB boards installed

Cage Code:		Document #: GT-17-221
U	HD Stacker Qualification	Revision: B
06324		Page 20 of 55

4.6 Contact Life

4.6.1 References

- Mini-Qual Test Plan (STACKER) based on MIL-DTL-55302G
- MIL-DTL-55302G Connectors, Printed Circuit Subassembly and Accessories

4.6.2 Test Equipment

Table 14: Contact Life Test Equipment

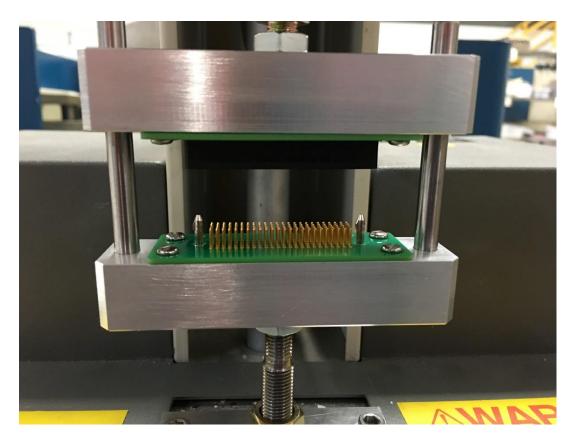
Manufacturer	Model Number	Description
Chatillon	TCD200	200 lb Tensile Tester Load Frame
Chatillon	DFIS 200	200 lb Load Cell

4.6.3 Test Method and Setup

Samples 1A and 2A were set up for push pull contact life connector testing and tested in accordance with MIL-DTL-55302G. Each side of the mated pair was mounted to a custom fixture to ensure proper mating of Stacker connectors during testing. Samples were mated 100 times at a rate of approximately 400 cycles per hour.

4.6.4 Test Results

Sample 1A and 2A completed contact life testing with no problems or issues. Both samples were in good working condition and showed no signs of cracking, bending, or binding.


4.6.5 Deviation of Test

No Deviations of Testing were recorded during Contact Life Testing.

Cage Code:		Document #: GT-17-221
0	HD Stacker Qualification	Revision: B
06324		Page 21 of 55

4.6.6 Photographs

Figure 10: Contact Life Testing Setup

Cage Code:		Document #: GT-17-221
U	HD Stacker Qualification	Revision: B
06324	-	Page 22 of 55

4.7 Mating and Unmating Force

4.7.1 References

- Mini-Qual Test Plan (STACKER) based on MIL-DTL-55302G
- MIL-DTL-55302G Connectors, Printed Circuit Subassembly and Accessories

4.7.2 Test Equipment

Table 15: Mating and Unmating Force Test Equipment

Manufacturer	Model Number	Description
Chatillon	TCD200	200 lb Tensile Tester Load Frame
Chatillon	DFIS 200	200 lb Load Cell

4.7.3 Test Method and Setup

Samples 1A and 2A were mounted in the same custom fixture used during Contact Life Testing. All test set up parameters were the same except for the rate of mating, which was set to 60 cycles per hour per MIL-DTL-55302G para 4.5.4. The maximum mate or unmate force cannot exceed 30 lb.

4.7.4 Test Results

During all Mating and Unmating Force testing no sample registered a force of greater than 30 lb. Sample 2A was inserted into sample 1A.

Table 16: Pre Vibration and Shock Mating and Unmating Force Results

Sample NumberUltimate Mating Force lb		Ultimate Un-mating Force lb		
2A into 1A Mated Pair	23.75	12.25		

Cage Code:		Document #: GT-17-221
0	HD Stacker Qualification	Revision: B
06324		Page 23 of 55

Figure 11: Sample 2A-1A Mating and Unmating Force Pre Vibration and Shock

4.7.5 Deviation of Test

No Deviations of Testing were recorded during Mating and Unmating Force Testing.

4.7.6 Photographs

Please see figure 10.

Cage Code:		Document #: GT-17-221
U	HD Stacker Qualification	Revision: B
06324	-	Page 24 of 55

4.8 Low Level Contact Resistance

4.8.1 References

- Mini-Qual Test Plan (STACKER) based on MIL-DTL-55302G
- MIL-DTL-55302G Connectors, Printed Circuit Subassembly and Accessories
- EIA-364-23 Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets

4.8.2 Test Equipment

Table 17: Low Level Contact Resistance Test Equipment

Manufacturer	Model Number	Description
Fluke	287	True RMS Digital Multimeter
Sorensen	XHR 40-25	DC Power Supply

4.8.3 Test Method and Setup

Using the voltage drop method the low level contact resistance of 7 contacts on each sample 1A and 2A were measured. A test current of 0.1 amps DC was applied across the contact while the voltage drop was measured. In order to probe the final side of the contact, virgin uninstalled contacts were provided to be used as a mounting point for power supply. Voltage drop measurement cannot exceed .3 millivolts.

4.8.4 Test Results

 Table 18: Pre Vibration and Shock Low Level Contact Resistance Results

Voltage drop per position (mV)							
Sample Number	114	115	116	117	118	119	120
1A	.154	.149	.155	.158	.156	.166	.155
2A	.192	.139	.122	.131	.124	.112	.121

4.8.5 Deviation of Test

No Deviations of Testing were recorded during Low Level Contact Resistance Testing.

Cage Code:		Document #: GT-17-221
U	HD Stacker Qualification	Revision: B
06324		Page 25 of 55

4.8.6 Photographs

Figure 12: Stacker Connector Sample during Low Level Resistance Testing

Cage Code:		Document #: GT-17-221
0	HD Stacker Qualification	Revision: B
06324		Page 26 of 55

4.9 Vibration

4.9.1 References

- Mini-Qual Test Plan (STACKER) based on MIL-DTL-55302G
- MIL-DTL-55302G Connectors, Printed Circuit Subassembly and Accessories
- EIA-364-28 Vibration Test Procedure for Electrical Connectors and Sockets

4.9.2 Test Equipment

Table 19: Vibration Test Equipment

Manufacturer	Model Number	Description
Ling	A395	Electrodynamic Shaker
Vibration Research	VR9500	Vibration Controller
Dytran	3056D1	Accelerometer

4.9.3 Test Method and Setup

Sample 1A and 2A were mounted to the vibration fixture as a mated pair on the fixture plate. Samples underwent 4 hours of Sinusoidal Vibration in each axis. During vibration testing samples are monitored electrically using a discontinuity tester. There cannot be a discontinuity greater than 1 microsecond during vibration testing at any time.

4.9.4 Test Results

Both samples 1A and 2A underwent vibration testing with no issues. Visually there was no damage to either sample and both had no defects that would hinder their performance. At no time during vibration testing was an electrical discontinuity of 1 microsecond or greater measured.

Cage Code: 06324	HD Stacker Qualification	Document #: GT-17-221 Revision: B Page 27 of 55
ak)	Acceleration Profile	
Acceleration (G peak)		Demar Contro
1.0		
elera		
Accele 0.1	100 Frequency (Hz)	1000 2000
	Output Drive	
lts)		Drive
Drive (Volts)		- my
Drive		
0.02	100 Frequency (Hz)	
	Figure 13: Vibration Profile	

4.9.5 Deviation of Test

No Deviations of Testing were recorded during Vibration Testing.

Cage Code:		Document #: GT-17-221
0	HD Stacker Qualification	Revision: B
06324		Page 28 of 55

4.9.6 Photographs

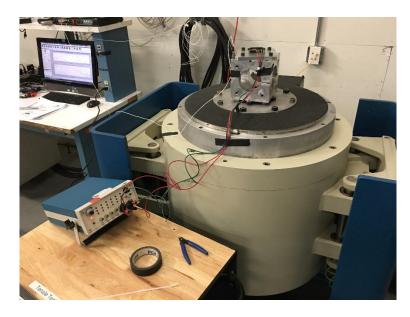


Figure 14: Vibration Shaker and Discontinuity Tester Setup

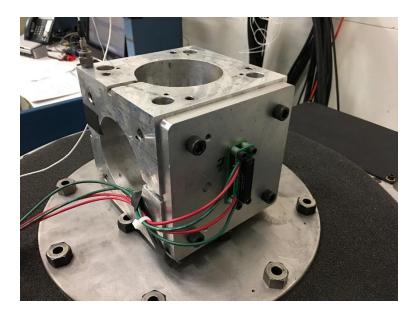


Figure 15: Close up of Stacker Vibration Fixture

Cage Code:		Document #: GT-17-221
U	HD Stacker Qualification	Revision: B
06324	-	Page 29 of 55

4.10 Mechanical Shock

4.10.1 References

- Mini-Qual Test Plan (STACKER) based on MIL-DTL-55302G
- MIL-DTL-55302G Connectors, Printed Circuit Subassembly and Accessories
- EIA-364-27 Mechanical Shock (Specified Impulse) Test Procedure for Electrical Connectors and Sockets

4.10.2 Test Equipment

Table 20: Mechanical Shock Test Equipment

Manufacturer	Model Number	Description
Ling	A395	Electrodynamic Shaker
Vibration Research	VR9500	Vibration Controller
Dytran	3056D1	Accelerometer

4.10.3 Test Method and Setup

The mated samples 1A and 2A underwent one shock in each direction for a total of 6 shocks. EIA-364-27, Test Condition G: Saw Tooth Shock Pulse. 100G peak acceleration. Samples were monitored electrically using a discontinuity tester. There cannot be a discontinuity greater than 1 microsecond during shock testing at any time.

4.10.4 Test Results

All testing was performed in accordance with EIA-364-27. Mated samples 1A and 2A underwent all shock testing, no discontinuity of 1 microsecond or greater was measured at any time. Samples were visually inspected and found to be undamaged and fully operational.

(Cage Code: 06324	HD Stacker Qualification	Document #: GT-17-221 Revision: B Page 30 of 55	

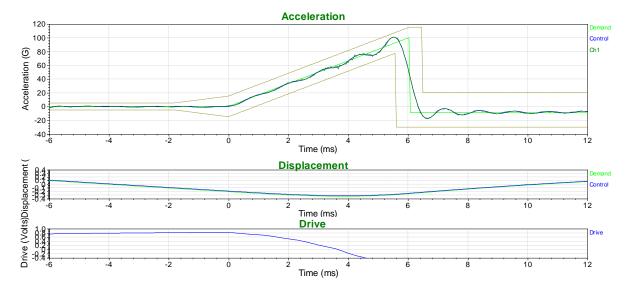
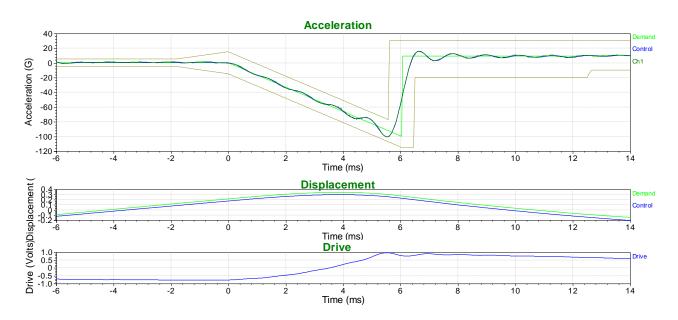



Figure 16: Terminal Sawtooth Shock in Positive Direction

Cage Code:		Document #: GT-17-221
06324	HD Stacker Qualification	Revision: B
00324		Page 31 of 55

4.10.5 Deviation of Test

No Deviations of Testing were recorded during Mating and Unmating Force Testing.

4.10.6 Photographs

Please see section 4.9.6.

Cage Code:		Document #: GT-17-221
U	HD Stacker Qualification	Revision: B
06324	-	Page 32 of 55

4.11 Low Level Contact Resistance

4.11.1 References

- Mini-Qual Test Plan (STACKER) based on MIL-DTL-55302G
- MIL-DTL-55302G Connectors, Printed Circuit Subassembly and Accessories
- EIA-364-23 Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets

4.11.2 Test Equipment

Table 21: Low Level Contact Resistance Test Equipment

Manufacturer	Model Number	Description
Fluke	287	True RMS Digital Multimeter
Sorensen	XHR 40-25	DC Power Supply

4.11.3 Test Method and Setup

Using the voltage drop method the low level contact resistance of 7 contacts on each sample 1A and 2A were measured. A test current of 0.1 amps DC was applied across the contact while the voltage drop was measured. In order to probe the final side of the contact, virgin uninstalled contacts were provided to be used as a mounting point for power supply. Voltage drop cannot exceed .3 millivolts.

4.11.4 Test Results

 Table 22: Post Vibration and Shock Low Level Contact Resistance Results

		Voltage drop per position (mV)					
Sample Number	114	115	116	117	118	119	120
1A	.165	.137	.143	.180	.115	.197	.153
2A	.165	.137	.143	.180	.115	.197	.153

4.11.5 Deviation of Test

No Deviations of Testing were recorded during Low Level Contact Resistance Testing.

4.11.6 Photographs

Please see Figure 12.

Cage Code:		Document #: GT-17-221
0	HD Stacker Qualification	Revision: B
06324		Page 33 of 55

4.12 Mating and Unmating Force

4.12.1 References

- Mini-Qual Test Plan (STACKER) based on MIL-DTL-55302G
- MIL-DTL-55302G Connectors, Printed Circuit Subassembly and Accessories

4.12.2 Test Equipment

Table 23: Mating and Unmating Force Test Equipment

Manufacturer	Model Number	Description
Chatillon	TCD200	200 lb Tensile Tester Load Frame
Chatillon	DFIS 200	200 lb Load Cell

4.12.3 Test Method and Setup

Samples 1A and 2A were mounted in the same custom fixture used during Contact Life testing. All test set up parameters were the same except for the rate of mating, which was set to 60 cycles per hour per MIL-DTL-55302G para 4.5.4. The maximum mate or unmate force cannot exceed 30 lb.

4.12.4 Test Results

Table 24: Post Vibration and Shock Mating and Unmating Force

Sample Number	Ultimate Mating Force lb	Ultimate Un-mating Force lb
2A into 1A Mated Pair	25.0	19.75

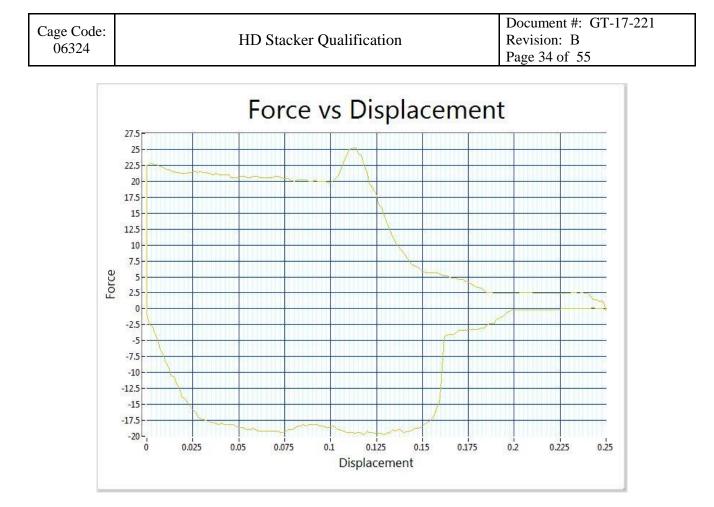


Figure 18: Sample 2A-1A Mating and Unmating Force Post Vibration and Shock

4.12.5 Deviation of Test

No Deviations of Testing were recorded during Mating and Unmating Force Testing.

4.12.6 Photographs

Please see Figure 10.

Cage Code: 06324		Document #: GT-17-221
	HD Stacker Qualification	Revision: B
		Page 35 of 55

5.0 Group 2 Testing

5.1 Contact Compliant Forces

5.1.1 References

- Mini-Qual Test Plan (STACKER) based on MIL-DTL-55302G
- MIL-DTL-55302G Connectors, Printed Circuit Subassembly and Accessories

5.1.2 Test Equipment

Table 25: Contact Compliant Forces Test Equipment

Manufacturer	Model Number	Description
Instron	3366	2250 lb Tensile Tester

5.1.3 Test Method and Setup

Samples 1B and 2B were mounted onto the tensile tester using a special fixture in order to press the Stacker connector onto its PCB board. The maximum amount of force required to completely install the sample on the board is recorded and reported.

5.1.4 Test Results

Table 26: Contact Compliance Mating Forces Results

Sample Number	Ultimate PCB Mounting Force lb
1B	1,951.9
2B	1,795.4

Cage Code:		Document #: GT-17-221
U	HD Stacker Qualification	Revision: B
06324		Page 36 of 55

Figure 19: Contact Compliant Mating Forces of Sample 1B and 2B

5.1.5 Deviation of Test

No Deviations of Testing were recorded during Contact Compliance Forces Testing.

5.1.6 Photographs

Please see Figure 9.

Cage Code:		Document #: GT-17-221
U	HD Stacker Qualification	Revision: B
06324		Page 37 of 55

5.2 DWV at Sea Level

5.2.1 References

- Mini-Qual Test Plan (STACKER) based on MIL-DTL-55302G
- MIL-DTL-55302G Connectors, Printed Circuit Subassembly and Accessories
- EIA-364-20 Withstanding Voltage Test Procedure for Electrical Connectors, Sockets and Coaxial Contacts

5.2.2 Test Equipment

Table 27: DWV at Sea Level Test Equipment

Manufacturer	Model Number	Description
Associated Electronics	Model 03770	HiPot Tester

5.2.3 Test Method and Setup

Samples 1B and 2B were tested in accordance with EIA-364-20. Samples were tested at 600 VAC for a 2 minute duration. There cannot be a leakage current of greater than 5 milliamps at any time during that 2 minute interval. Both the electrical feedthroughs and Glenair supplied cable harness were tested independently before official testing in order to confirm any failures would be due to the Stacker sample and not the test set up.

5.2.4 Test Results

All testing on sample 1B and 2B were conducted in accordance with the specifications in section 4.3.3 above. At no time during testing was a leakage current of greater than 5 milliamps detected.

5.2.5 Deviation of Test

No Deviations of Testing were recorded during DWV at Sea Level Testing.

Cage Code		Document #: GT-17-221
U	HD Stacker Qualification	Revision: B
06324		Page 38 of 55

5.2.6 Photographs

Figure 20: Stacker Test Sample Attached to Adapter for DWV Testing

Cage Code:		Document #: GT-17-221
U	HD Stacker Qualification	Revision: B
06324		Page 39 of 55

5.3 Insulation Resistance

5.3.1 References

- Mini-Qual Test Plan (STACKER) based on MIL-DTL-55302G
- MIL-DTL-55302G Connectors, Printed Circuit Subassembly and Accessories
- EIA-364-21 Insulation Resistance Test Procedure for Electrical Connectors, Sockets and Coaxial Contacts

5.3.2 Test Equipment

Table 28: Insulation Resistance Test Equipment

Manufacturer	Model Number	Description		
Associated Electronics	Model 03770	HiPot Tester		

5.3.3 Test Method and Setup

Samples 1B and 2B were tested in accordance with EIA-364-21, 500 VDC for a duration of 2 minutes or until 5,000 Megohms was reached. Identical test harness used for DWV testing was also to be used for IR testing. Both the electrical feedthroughs and Glenair supplied cable harness were tested independently before official testing in order to confirm any failures would be due to the Stacker sample and not the test set up.

5.3.4 Test Results

Both samples reached 5,000 Megohms of resistance within 5 seconds. Visual inspection revealed no damage to any of the test samples

5.3.5 Deviation of Test

No Deviations of Testing were recorded during Insulation Resistance Testing.

5.3.6 Photographs

Please see Figure 20.

Casa Cada		Document #: GT-17-221
Cage Code:	HD Stacker Qualification	Revision: B
06324		Page 40 of 55

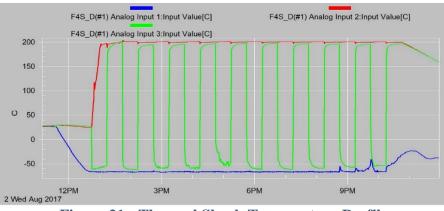
5.4 Temperature Cycling

5.4.1 References

- Mini-Qual Test Plan (STACKER) based on MIL-DTL-55302G
- MIL-DTL-55302G Connectors, Printed Circuit Subassembly and Accessories
- EIA-364-32 Thermal Shock (Temperature Cycling) Test Procedure for Electrical Connectors and Sockets

5.4.2 Test Equipment

Table 29: Temperature Cycling Test Equipment


Manufacturer	Model Number	Description
Ransco	9102	Thermal Shock Chamber

5.4.3 Test Method and Setup

Samples 1B and 2B were tested in accordance with EIA-364-32, Method A, Test Condition III, except requiring 5 cycles, -65°C to +200°C with 15 minute soak at each temperature extreme for 2.5 hour total test duration.

5.4.4 Test Results

Visual Inspection revealed no damage to either sample 1B or 2B. See below for temperature profile.

Cage Code:		Document #: GT-17-221
06324	HD Stacker Qualification	Revision: B
00324		Page 41 of 55

5.4.5 Deviation of Test

No Deviations of Testing were recorded during Thermal Shock Testing.

5.4.6 Photographs

Figure 22: Samples Read for Thermal Shock Testing

Cage Code:		Document #: GT-17-221
0	HD Stacker Qualification	Revision: B
06324		Page 42 of 55

5.5 Contact Resistance

5.5.1 References

- Mini-Qual Test Plan (STACKER) based on MIL-DTL-55302G
- MIL-DTL-55302G Connectors, Printed Circuit Subassembly and Accessories
- EIA-364-06 Contact Resistance Test Procedure for Electrical Connectors

5.5.2 Test Equipment

Table 30: Contact Resistance Testing Equipment

Manufacturer Model Number		Description
Fluke	287	True RMS Digital Multimeter
Sorensen	XHR 40-25	DC Power Supply

5.5.3 Test Method and Setup

Using the voltage drop method the low level contact resistance of 7 contacts on each sample 1B and 2B were measured. A test current of 5 amps DC was applied across the contact while the voltage drop was measured. In order to probe the final side of the contact, virgin uninstalled contacts were provided to be used as a mounting point for power supply. Voltage drop cannot exceed 75 millivolts.

5.5.4 Test Results

All samples were measured and no contact exceeded 75 millivolts of voltage drop.

Table 31: Post Thermal Shock Contact Resistance Results

		Voltage drop per position (mV)					
Sample Number	114	115	116	117	118	119	120
1B	11.38	7.40	7.04	6.02	9.30	6.05	6.78
2B	7.89	11.70	9.35	11.40	8.17	10.344	6.05

Cage Code:		Document #: GT-17-221
06324	HD Stacker Qualification	Revision: B
00324		Page 43 of 55

5.5.5 Deviation of Test

No Deviations of Testing were recorded during Contact Resistance Testing.

5.5.6 Photographs

Please see Figure 12.

Cage Code:		Document #: GT-17-221
0	HD Stacker Qualification	Revision: B
06324		Page 44 of 55

5.6 Humidity Exposure

5.6.1 References

- Mini-Qual Test Plan (STACKER) based on MIL-DTL-55302G
- MIL-DTL-55302G Connectors, Printed Circuit Subassembly and Accessories
- EIA-364-31- Humidity Test Procedure for Electrical Connectors and Sockets

5.6.2 Test Equipment

Table 32: Humidity Exposure Testing Equipment

Manufacturer	Model Number	Description
Espec	SH-220	Humidity Chamber
Dickson	RH-2	Temp and Humidity Logger

5.6.3 Test Method and Setup

Samples 1B and 2B were tested in accordance with EIA-364-31, Method IV, which specifies 10 continuous 24 hour cycles. Samples were placed in the humidity chamber and not removed until all humidity cycling was complete. Per MIL-DTL-55302G, steps 7a and 7b were not required.

5.6.4 Test Results

Visual Inspection revealed no damage to either of the test samples 1B or 2B. A small amount of discoloration was visible on the contact surface.

Cage Code:		Document #: GT-17-221
U	HD Stacker Qualification	Revision: B
06324		Page 45 of 55

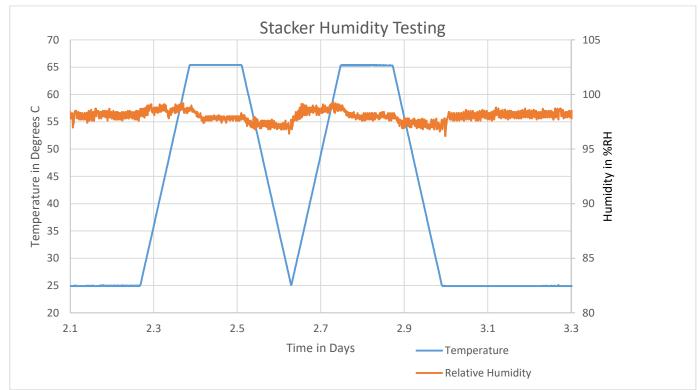


Figure 23: A Single Cycle of Humidity Exposure Testing

5.6.5 Deviation of Test

No Deviations of Testing were recorded during Humidity Exposure Testing.

Cage Code:		Document #: GT-17-221
U	HD Stacker Qualification	Revision: B
06324		Page 46 of 55

5.6.6 Photographs

Figure 24: Samples 2A and 2B ready for Humidity Exposure Testing

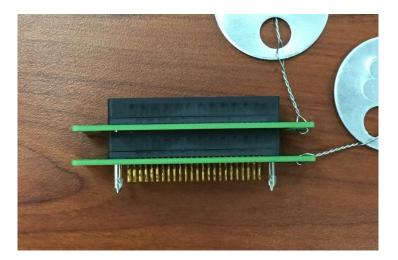


Figure 25: Small Amount of Discoloration Visible on Sample Contacts

Cage Code:		Document #: GT-17-221	l
06324	HD Stacker Qualification	Revision: B	l
00324		Page 47 of 55	l

5.7 Insulation Resistance

5.7.1 References

- Mini-Qual Test Plan (STACKER) based on MIL-DTL-55302G
- MIL-DTL-55302G Connectors, Printed Circuit Subassembly and Accessories
- EIA-364-21 Insulation Resistance Test Procedure for Electrical Connectors, Sockets and Coaxial Contacts

5.7.2 Test Equipment

Table 33: Insulation Resistance Test Equipment

Manufacturer	Model Number	Description	
Associated Electronics	Model 03770	HiPot Tester	

5.7.3 Test Method and Setup

Samples 1B and 2B were tested in accordance with EIA-364-21 for a duration of 2 minutes or until 5,000 Megohms was reached. Test voltage was 100 VDC per MIL-DTL-55302G. Identical test harness use for DWV testing was also to be used for IR testing. Both the electrical feedthroughs and Glenair supplied cable harness were tested independently before official testing in order to confirm any failures would be due to the Stacker sample and not the test set up. Samples were conditioned in an environmental chamber for 2 hours at 35C before IR testing was conducted, as specified in EIA-364-21.

5.7.4 Test Results

Both samples 1B and 2B reached 5,000 Megohms of resistance within 5 seconds. Visual inspection revealed no damage to any of the test samples caused because of IR testing.

5.7.5 Deviation of Test

No Deviations of Testing were recorded during Humidity Exposure Testing.

5.7.6 Photographs

Please see Figure 20.

Caga Cada		Document #: GT-17-221
Cage Code:	HD Stacker Qualification	Revision: B
06324		Page 48 of 55

5.8 Contact Resistance

5.8.1 References

- Mini-Qual Test Plan (STACKER) based on MIL-DTL-55302G
- MIL-DTL-55302G Connectors, Printed Circuit Subassembly and Accessories

5.8.2 Test Equipment

Table 34: Contact Resistance Test Equipment

Manufacturer Model Number Descr		Description
Fluke	287	True RMS Digital Multimeter
Sorensen	XHR 40-25	DC Power Supply

5.8.3 Test Method and Setup

Using the voltage drop method the contact resistance of 7 contacts on each sample 1B and 2B were measured. A test current of 5 amps DC was applied across the contact while the voltage drop was measured. In order to probe the final side of the contact, virgin uninstalled contacts were provided to be used as a mounting point for power supply. Voltage drop cannot exceed 75 millivolts.

5.8.4 Test Results

Table 35: Post Humidity Exposure Contact Resistance Results

	Voltage drop per position (mV)						
Sample Number	114	115	116	117	118	119	120
1B	6.94	7.33	6.05	6.25	10.87	6.97	10.30
2B	6.61	10.46	6.15	10.09	6.27	9.36	8.39

5.8.5 Deviation of Test

No Deviations of Testing were recorded during Contact Resistance Testing.

5.8.6 Photographs

Please see Figure 12.

Cage Code:		Document #: GT-17-221	
0	HD Stacker Qualification	Revision: B	
06324	-	Page 49 of 55	

5.9 Low Level Contact Resistance

5.9.1 References

- Mini-Qual Test Plan (STACKER) based on MIL-DTL-55302G
- MIL-DTL-55302G Connectors, Printed Circuit Subassembly and Accessories
- EIA-364-23 Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets

5.9.2 Test Equipment

Table 36: Low Level Contact Resistance Test Equipment

Manufacturer	IanufacturerModel NumberDescription	
Fluke	287	True RMS Digital Multimeter
Sorensen	XHR 40-25	DC Power Supply

5.9.3 Test Method and Setup

Using the voltage drop method the low level contact resistance of 7 contacts on each sample 1B and 2B were measured. A test current of 0.1 amps DC was applied across the contact while the voltage drop was measured. In order to probe the final side of the contact, virgin uninstalled contacts were provided to be used as a mounting point for power supply. Voltage drop measurement cannot exceed .3 millivolts.

5.9.4 Test Results

Voltage drop per position (mV)							
Sample Number	114	115	116	117	118	119	120
1B	.153	.165	.187	.173	.190	.159	.148
2B	.182	.190	.201	.185	.172	.162	.208

Table 37: Low Level Contact Resistance Results

5.9.5 Deviations of Test

No Deviations of Testing were recorded during Low Level Contact Resistance Testing.

	Cage Code:		Document #: GT-17-221
	U	HD Stacker Qualification	Revision: B
06324		Page 50 of 55	

5.10 Mating and Unmating Force

5.10.1 References

- Mini-Qual Test Plan (STACKER) based on MIL-DTL-55302G
- MIL-DTL-55302G Connectors, Printed Circuit Subassembly and Accessories

5.10.2 Test Equipment

Table 38: Post Humidity Mating and Unmating Force Results

Manufacturer	Model Number	Description
Chatillon	TCD200	200 lb Tensile Tester Load Frame
Chatillon	DFIS 200	200 lb Load Cell

5.10.3 Test Method and Setup

Samples 1B and 2B were mounted in the same custom fixture used during Contact Life testing. All test set up parameters were the same except for the rate of mating, which was set to 60 cycles per hour per MIL-DTL-55302G para 4.5.4. The maximum mate or unmate force cannot exceed 30 lb.

5.10.4 Test Results

Table 39: Post Humidity Mating and Unmating Force Results

Sample Number	Ultimate Mating Force lb	Ultimate Un-mating Force lb
2B into 1B Mated Pair	23.0	16.0

Cage Code: 06324	HD Stacker Qualification Document #: GT-17-221 Revision: B Page 51 of 55
	Force vs Displacement
	22.5
	12.5- 10- 7.5- 95 5- 2.5-

Figure 26: Sample 2B-1B Post Humidity Mating and Unmating Force Trace

0.14

0.16

Displacement

0.18

0.2

0.22

0.24

0.26

0.28

0.3

5.10.5 Deviation of Test

0.04

0.06

0.08

0.1

0.12

No Deviations of Testing were recorded during Mating and Unmating Force Testing.

5.10.6 Photographs

0.02

Please see Figure 10.

-2

-7. -10 -12.5 -15 -17.5ó

Cage Code:		Document #: GT-17-221	
06324	HD Stacker Qualification	Revision: B	
00524		Page 52 of 55	L

5.11 Contact Compliant Removal Forces

5.11.1 References

- Mini-Qual Test Plan (STACKER) based on MIL-DTL-55302G
- MIL-DTL-55302G Connectors, Printed Circuit Subassembly and Accessories

5.11.2 Test Equipment

Table 40: Contact Compliant Removal Forces Test Equipment

Manufacturer	Model Number	Description
Instron	3366	2250 lb Tensile Tester

5.11.3 Test Method and Setup

Sample 2B was dismounted onto the tensile tester using a special fixture in order to release the Stacker connector from its PCB board. The maximum amount of force required to completely remove the sample from its board is recorded and reported.

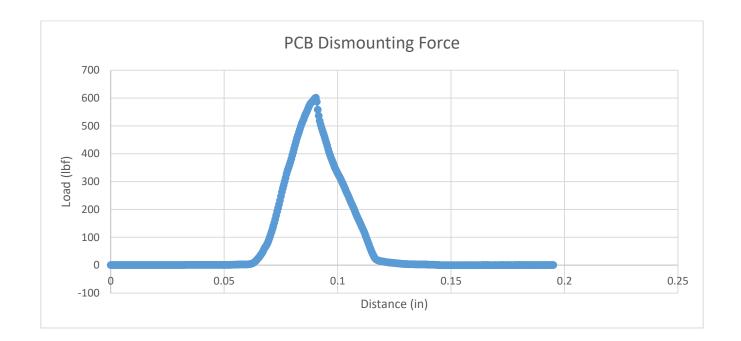

5.11.4 Test Results

 Table 41: Contact Compliant Removal Forces Results

Sample Number	Ultimate PCB Mounting Force
2B	600.90 lb

Cage Code:		Document #: GT-17-221
U	HD Stacker Qualification	Revision: B
06324		Page 53 of 55

Figure 27: PCB Dismounting Force for Sample 2B

5.11.5 Deviation of Test

No Deviations of Testing were recorded during Contact Compliant Removal Forces Testing.

Cage Code		Document #: GT-17-221
U	HD Stacker Qualification	Revision: B
06324		Page 54 of 55

5.11.6 Photographs

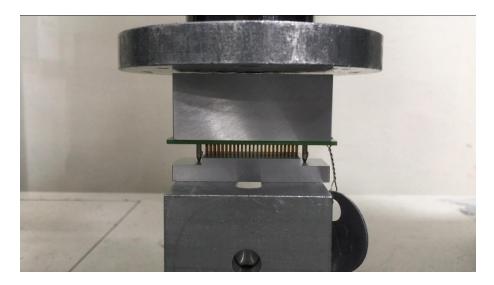


Figure 28: PCB Dismounting Fixture



Figure 29: Dismount Complete

Cage Code:		Document #: GT-17-221
0	HD Stacker Qualification	Revision: B
06324		Page 55 of 55

END OF REPORT