

Issue date	22/06/21
Test Report	
TR	170-21
Pag. 1 of 36	Rev. 0

Test Laboratory Glenair Italia S.p.a. Via del Lavoro 7, Quarto Inferiore – Granarolo dell'Emilia (BO) 40057, Italy

Client - cliente: Glenair Italia – Product Manager

Reference contact – contatto: P. Brulatti

Title – titolo: Octobyte - Ethernet Test – Cat. 8

Tests carried out by - test eseguito da:	Siel
Test report compiled by - rapport di prova scritto da: S. Cremonini	Siel

Statement - dichiarazione: This is to certify that all tests have been conducted in accordance with the order/ specification / test programme. The results relate to the samples tested and have been accurately recorded in the test report given under the Testlab Manager authority. This report shall not be reproduced without the written approval of the laboratory- Questo per dichiarare che tutte le prove sono state effettuate in accordo agli ordini / norme / programmi di prova. I risultati sono relativi ai campioni sottoposti alle prove sono stati registrati in maniera accurata nel rapporto di prova distribuito sotto la supervisione del Responsabile del Laboratorio. Questo rapporto di prova non deve essere riprodotto senza il consenso scritto del Laboratorio.

Test Laboratory Glenair Italia s.p.a. Tel. +39 051 6069998 Email: <u>labs@glenair.it</u>

Issue date	22/06/21
Test Report	
TR	170-21
Pag. 2 of 36	Rev. 0

Summary page – pagina riassuntiva:

a) Scope of test - scopo delle prove

The purpose was to carry out an Ethernet Cat 8 test on new Octobyte connectors. Ethernet TIA/EIA 568 CAT 8 and ISO11801 Class II allows to transmits/receive at 40GBASE-T (40 Gigabit Ethernet) for transmitting Ethernet frames at rates of 40 gigabits per second (Gbit/s).

Ethernet test can be performed as Channel link or Permanent link performance. Permanent link requirements are more severe than channel requirement.

Test was performed with Permanent Link requirements to test the more severe requirement.

Test configuration:

Only cable (as reference)

- Socket Tera connector – 24 meter of cable – Socket Tera connector.

Issue date	22/06/21
Test Report	
TR	170-21
Pag. 3 of 36	Rev. 0

- 1 Octobyte connection:
 - Socket Tera connector 12 meter of cable Octobyte socket connector **mated** with Octobyte Plug connector 12 meter of cable Socket Tera connector.

- 2 Octobyte connections:
 - Socket Tera connector 12 meter of cable Octobyte socket connector mated with Octobyte Plug connector – 2,5 meter of cable – Octobyte Plug connector mated with Octobyte Socket connector – 9,5 meter of cable - Socket Tera connector.

Issue date	22/06/21
Test Report	
TR	170-21
Pag. 4 of 36	Rev. 0

b) Conclusions / Outcome - conclusioni / esito:

Test	Only Cable	1 Octobyte connection	2 Octobyte connections
TIA/EIA 568 CAT 8 Permanent Link	PASS	PASS	PASS
ISO11801 Class II Permanent Link 2	PASS	PASS	PASS

Octobyte connectors pass the test of TIA/EIA 568 Cat 8 permanent link and ISO 11801 Class II Permanent link with positive result.

As per graphs below the difference between measure on: only cable / 1 connection / 2 connection are similar. Octobyte connectors connection affect low on the performance.

Insertion Loss comparison

Graph was made with the minimum value of Insertion loss between pairs for each frequency.

NEXT comparison

Graph was made with the minimum value of Next between pairs for each frequency.

Issue date	22/06/21
Test Report	
TR	170-21
Pag. 7 of 36	Rev. 0

Graph was made with the minimum value of Next between pairs for each frequency.

Return Loss comparison

Graph was made with the minimum value of Return loss between pairs for each frequency.

Issue date	22/06/21
Test Report	
TR	170-21
Pag. 9 of 36	Rev. 0

Graph was made with the minimum value of Return loss between pairs for each frequency.

Issue date	22/06/21
Test Report	
TR	170-21
Pag. 10 of 36	Rev. 0

Issue date	22/06/21
Test Report	
TR	170-21
Pag. 11 of 36	Rev. 0

Issue date	22/06/21
Test Report	
TR	170-21
Pag. 12 of 36	Rev. 0

Date of receipt of samples - data di ricezione campioni: 09/06/21

List of tests – lista delle prove:	Standard / specification applicable – norme / specifiche applicabili	Testlab procedure cross – reference – Procedura Testlab
 Ethernet test - Permanent Link 	ISO/IEC 11801:Edition 2.0 2010-04 ; ANSI/TIA-568-D	

Comments / remarks / test deviations - commenti / osservazioni/ deviazioni:

1. Ethernet Test – CAT8

1.1. Description of Test method procedure – Descrizione della procedura del metodo di prova

Testing as per ISO/IEC 11801 Cat 8 II Permeant link and ANSI/TIA 568 Category 8 Permanent Link.

Configuration:

Test configuration:

Only cable (as reference)

- Socket Tera connector – 24 meter of cable – Socket Tera connector.

1 Octobyte connection:

Socket Tera connector – 12 meter of cable – Octobyte socket connector **mated** with Octobyte Plug connector – 12 meter of cable - Socket Tera connector.

Issue date	22/06/21
Test Report	
TR	170-21
Pag. 14 of 36	Rev. 0

2 Octobyte connections:

 Socket Tera connector – 12 meter of cable – Octobyte socket connector mated with Octobyte Plug connector – 2,5 meter of cable – Octobyte Plug connector mated with Octobyte Socket connector – 9,5 meter of cable - Socket Tera connector.

Issue date	22/06/21
Test Report	
TR	170-21
Pag. 15 of 36	Rev. 0

1.2. Items tested - campioni sottoposti a prova

As above.

1.3. Relevant equipment - strumenti utilizzati

Equipment Strumento	Internal code Codice interno	Serial Number Numero di matricola	Manufacturer / model – marca / modello	Calibration expiration date – scadenza taratura
LAN cable certifier	DSX8000	1932179+19345288; 19320145+1932375	Fluke / DSX-8000	12/21

1.4. Requirement - requisiti

PASS.

1.5. Date and place of test – data e luogo della prova

09/06/21; 18/06/21 - Glenair Italia Test laboratory - Environmental Test Room

1.6. Environmental conditions - condizioni ambientali

Date	Temperature	Humidity	Atmospheric pressure (hPa)
09/06/21	23,4°C	38,7 %RH	1011
18/06/21	23,1°C	45,6 %RH	1016

1.7. Result – risultati

Test on Cable – ANSI/TIA Cat. 8 Permanent Link

able ID: TERA 24MT CAT8 TIA PERM at 8 S/FTP TIA Cat 8 Perm. Link (+All) s/01/2021 02:49 PM DSX-8000		Hea S/N	Headroom (NEXT): 29.4 dB S/N: 1932179		
Tests	Detail	Status	Value	Limit	Margin
Insertion Loss (dB) NEXT (dB) PS NEXT (dB) ACR-N (dB) PS ACR-N (dB) ACR-F (dB) PS ACR-F (dB) RL (dB) TCL (dB) CDNEXT (dB) CDNEXT (dB) ELTCTL (dB) Length (m) Prop. Delay (ns) Delay Skew (ns) Resistance (ohms)	Pair 4,5, 1958.0 MHz Pair 3,6-4,5, 3,3 MHz Pair 3,6-4,5, 3,3 MHz Pair 3,6-4,5, 3,3 MHz Pair 3,6-1,2, 1,1 MHz Pair 3,6-1,2, 1,1 MHz Pair 4,5, 1,2 NHz Pair 4,5, 87,8 MHz Pair 4,5, 87,8 MHz Pair 4,5, 1654.0 MHz Pair 4,5, 1,0 MHz Pair 3,6 Pair 3,6 Pair 3,6 Pair 3,6	PASS PASS PASS N/A N/A PASS PASS PASS PASS PASS PASS PASS PA	20.1 94.4 92.1 93.7 91.4 93.1 90.9 11.4 30.4 42.5 5.0 52.6 23.5 112 3 3.00 0.012	25.8 65.0 62.0 62.0 59.0 71.4 68.4 8.0 24.0 46.8 24.0 136 13 5.60 0.100	5.7 29.4 30.1 31.7 32.4 21.7 22.5 3.4 6.4 5.8 0.5 24 10 2.60 0.088
Resistance P2P Unbalance (ohms) Wire Map	Pair 3,6-7,8	PASS	0.008	0.200	0.192

Issue date	22/06/21
Test Report	
TR	170-21
Pag. 19 of 36	Rev. 0

Test on Cable – ISO/IEC 11801 Cat. II Permanent Link 2

CABLE TEST MANAGEMENT SOFTWARE

able ID: TERA 24MT CAT8 II PL2 at 8 S/FTP ISO11801 PL Class II (+All) 5/01/2021 02:43 PM DSX-8000		Hea S/N	Headroom (NEXT): 12.1 dB S/N: 1932179		
Tests	Detail	Status	Value	Limit	Margin
Insertion Loss (dB)	Pair 4,5, 1958.0 MHz	PASS	20.1	25.0	4.9
NEXT (dB)	Pair 4,5-7,8, 142.5 MHz	PASS	75.7	63.6	12.1
PS NEXT (dB)	Pair 7,8, 124.5 MHz	PASS	75.3	61.7	13.6
ACR-N (dB)	Pair 4,5-7,8, 142.5 MHz	PASS	70.9	57.4	13.5
PS ACR-N (dB)	Pair 7,8, 124.5 MHz	PASS	70.8	55.9	14.9
ACR-F (dB)	Pair 3,6-4,5, 414.0 MHz	PASS	61.4	41.2	20.2
PS ACR-F (dB)	Pair 4,5, 369.0 MHz	PASS	61.0	39.2	21.8
RL (dB)	Pair 7,8, 114.0 MHz	PASS	21.7	17.3	4.4
TCL (dB)	Pair 4,5, 87.8 MHz	PASS	30.4	17.0	13.4
CDNEXT (dB)	Pair 7,8-4,5, 1402.0 MHz		42.5		
CMRL (dB)	Pair 4,5, 1648.0 MHz		5.0		
ELTCTL (dB)	Pair 1,2, 2000.0 MHz	PASS	17.7	3.0	14.7
Length (m)	Pair 7,8		23.5		
Prop. Delay (ns)	Pair 3,6	PASS	112	147	35
Delay Skew (ns)	Pair 3,6	PASS	3	9	6
Resistance (ohms)	Pair 3,6	PASS	3.01	6.00	2.99
Resistance Unbalance (ohms)	Pair 1,2	PASS	0.016	0.200	0.184
Resistance P2P Unbalance (ohms)	Pair 3,6-7,8	PASS	0.009	0.200	0.191
Wire Map		PASS			

TR Pag. 21 of 36

/

ſ

able ID: TER	A 24MT	CAT8	II PL2			Test Summary: PA
t Limit: ISO118 its Version: V7.5 e / Time: 08/01/2 rator: SIMONE idroom 12.1 dB ile Type: Cat 8 S P: 72.0%	01 PL Clas 2021 02:43 CREMONI (NEXT 4,5 5/FTP	55 II (+AII 3:33 PM NI 5-7,8))	Main: V S/N: 1 Softw Calibr Adapter S/N: 1	ersiv 932179 are Version: V6.5 Build 5 ation Date: 05/14/2020 : DSX-8000 (DSX-PLA-8-TERA) 9470006	Remote: Versiv S/N: 1932375 Software Version: V6.5 Build 5 Calibration Date: 05/12/2020 Adapter: DSX-8000R (DSX-PLA-8-TERA) S/N: 19470005
v	/orst Case	Margin	Worst C	ase Value	100 TCL (dB)	100 TCL @ Remote (dB)
PASS Worst Pair TCL (dB) Freq. (MHz) Limit (dB) N/A Worst Pair	MAIN 4,5 13.4 87.8 17.0 MAIN	SR 1,2 13.9 29.8 25.0 SR	MAIN 1,2 16.7 370.0 6.3 MAIN 7.8-45	SR 1,2 18.6 369.0 6.4 SR 7.8-4.5	80 40 20 0 500 1000 1500 2000 MHZ	80 40 20 0 500 1000 1500 2000 MHZ
CDNEXT (dB) Freq. (MHz) Limit (dB)			39.4 1434.	42.5 1402.	CDNEXT (dB)	CDNEXT @ Remote (dB)
N/A Worst Pair CMRL (dB) Freq. (MHz) Limit (dB)	MAIN	SR	MAIN 4,5 3.5 1644.	SR 4,5 5.0 1648.		
PASS Worst Pair ELTCTL (dB) Freq. (MHz) Limit (dB)	MAIN 3,6 14.8 2000. 3.0	SR 1,2 14.7 2000. 3.0	MAIN 3,6 14.8 2000. 3.0	SR 1,2 14.7 2000. 3.0	MHz CMRL (dB) 50 40 30 20 0 500 1000 1500 2000 MHz 100 ELTCTL (dB)	MHz CMRL @ Remote (dB) 50 40 30 20 10 0 500 1000 1500 2000 MHz 100 ELTCTL @ Remote (dB)
					80 40 0 0 0 500 1000 1500 2000 MHz	80 40 20 0 0 500 1000 1500 2000 MHz

Issue date	22/06/21			
Test Report				
TR	170-21			
Pag. 22 of 36	Rev. 0			

Test on 1 Octobyte connection – ANSI/TIA Cat. 8 Permanent Link

W LINKWARE[™]PC CABLE TEST MANAGEMENT SOFTWARE

Cable ID: TERA + 1 OCTO CAT Cat 8 S/FTP 06/09/2021 01:47 PM	3 TIA P TIA Cat 8 Perm. Link (+All) DSX-8000	Hea S/N:	droom (NEXT): 29 1932179	.1 dB	PASS
Tests	Detail	Status	Value	Limit	Margin
Insertion Loss (dB) NEXT (dB) PS NEXT (dB) ACR-N (dB) PS ACR-N (dB) ACR-F (dB) PS ACR-F (dB) RL (dB) TCL (dB) CDNEXT (dB) CDNEXT (dB) CDNEXT (dB) ELTCTL (dB) Length (m) Prop. Delay (ns) Delay Skew (ns) Resistance (ohms) Resistance (ohms)	Pair 3,6, 1982.0 MHz Pair 3,6-7,8, 1.9 MHz Pair 3,6-7,8, 1.9 MHz Pair 3,6-7,8, 1.9 MHz Pair 3,6-7,8, 1.9 MHz Pair 4,5-3,6, 1.0 MHz Pair 4,5, 1.0 MHz Pair 4,5, 1.0 MHz Pair 4,5, 87.8 MHz Pair 4,5, 87.8 MHz Pair 4,5, 1646.0 MHz Pair 4,5, 1.0 MHz Pair 7,8 Pair 3,6 Pair 3,6 Pair 3,6 Pair 1,2 Pair 3,6 Z 8	PASS PASS PASS PASS N/A PASS PASS PASS PASS PASS PASS PASS PA	20.8 94.1 92.3 93.5 91.6 93.1 91.2 10.7 30.3 42.7 5.6 52.4 23.5 112 3 3.03 0.014	26.0 65.0 62.0 62.0 59.0 72.4 69.4 8.0 24.0 136 13 5.60 0.100	5.2 29.1 30.3 31.5 32.6 20.7 21.8 2.7 6.3 5.6 0.5 24 10 2.57 0.086 0.193

TR

Issue date	22/06/21
Test Report	
TR	170-21
Pag. 25 of 36	Rev. 0

Issue date	22/06/21
Test Report	
TR	170-21
Pag. 26 of 36	Rev. 0

Test on 1 Octobyte connection – ISO/IEC 11801 Cat. II Permanent Link 2

Cable ID: TERA + 1 OCTO CATS Cat 8 S/FTP 06/09/2021 01:46 PM	Headroom (NEXT): 10.5 dB S/N: 1932179				
Tests	Detail	Status	Value	Limit	Margin
Insertion Loss (dB)	Pair 3,6, 1980.0 MHz	PASS	20.8	25.2	4.4
NEXT (dB)	Pair 4,5-7,8, 137.5 MHz	PASS	74.4	63.9	10.5
PS NEXT (dB)	Pair 7,8, 129.0 MHz	PASS	73.8	61.4	12.4
ACR-N (dB)	Pair 4,5-7,8, 137.5 MHz	PASS	69.7	57.8	11.9
PS ACR-N (dB)	Pair 7,8, 129.0 MHz	PASS	69.2	55.5	13.7
ACR-F (dB)	Pair 7,8-4,5, 749.0 MHz	PASS	56.3	36.0	20.3
PS ACR-F (dB)	Pair 3,6, 369.0 MHz	PASS	59.9	39.2	20.7
RL (dB)	Pair 4,5, 52.5 MHz	PASS	21.4	18.0	3.4
TCL (dB)	Pair 4,5, 87.8 MHz	PASS	30.3	17.0	13.3
CDNEXT (dB)	Pair 7,8-4,5, 1402.0 MHz		42.5		
CMRL (dB)	Pair 4,5, 1644.0 MHz		5.7		
ELTCTL (dB)	Pair 1,2, 2000.0 MHz	PASS	16.9	3.0	13.9
Length (m)	Pair 7,8		23.5		
Prop. Delay (ns)	Pair 3,6	PASS	112	147	35
Delay Skew (ns)	Pair 3,6	PASS	3	9	6
Resistance (ohms)	Pair 3,6	PASS	3.02	6.00	2.98
Resistance Unbalance (ohms)	Pair 1.2	PASS	0.019	0.200	0.181
Resistance P2P Unbalance (ohms)	Pair 3.6-7.8	PASS	0.007	0.200	0.193
Wire Map		PASS			

CAT8 Test-.flw

Page 3

TR Pag. 28 of 36

Test on 2 Octobyte connections – ANSI/TIA Cat. 8 Permanent Link

Cable ID: TERA + 2 OCTO CAT8 Cat 8 S/FTP 06/18/2021 04:54 PM	droom (NEXT): 26 1932179	PASS			
Tests	Detail	Status	Value	Limit	Margin
Insertion Loss (dB) NEXT (dB) PS NEXT (dB) ACR-N (dB) PS ACR-N (dB) ACR-F (dB) PS ACR-F (dB) RL (dB) TCL (dB) CDNEXT (dB) CDNEXT (dB) CDNEXT (dB) ELTCTL (dB) Length (m) Prop. Delay (ns) Delay Skew (ns) Resistance (ohms) Resistance (ohms) Resistance (ohms)	Pair 4,5, 1934.0 MHz Pair 1,2-7,8, 3.9 MHz Pair 1,2-7,8, 3.9 MHz Pair 7,8, 3.6 MHz Pair 4,5-3,6, 1.0 MHz Pair 4,5, 1.0 MHz Pair 4,5, 70.8 MHz Pair 4,5, 70.8 MHz Pair 4,5, 1646.0 MHz Pair 7,8, 1.0 MHz Pair 1,2 Pair 3,6 Pair 3,6 Pair 3,6 Pair 1,2 Pair 1,2 Pair 3,6 Pair 3,6	PASS PASS PASS N/A N/A PASS PASS PASS PASS PASS PASS PASS PA	22.2 90.5 90.1 89.8 89.4 90.8 89.1 19.9 32.3 40.2 5.2 50.0 23.5 111 2 2.99 0.014 0.009	25.7 64.0 61.2 61.0 58.2 72.4 69.4 18.0 25.6 46.8 24.0 136 13 5.60 0.100 0.200	3.5 26.5 28.9 28.8 31.2 18.4 19.7 1.9 6.7 3.2 0.5 25 11 2.61 0.086 0.191

FLUKE networks.

TR

Pag. 31 of 36

Cable ID: TERA + 2 OCTO CAT8 TIA P Test Limit: TIA Cat 8 Perm. Link (+All) Limits Version: V7.6 Date / Time: 06/18/2021 04:54:15 PM Operator: SIMONE CREMONINI Headroom 26.5 dB (NEXT 1,2-7,8) Cable Type: Cat 8 S/FTP NVP: 72.0%

Main: Versiv S/N: 1932179 Software Version: V6.6 Build 2 Calibration Date: 05/14/2020 Calibration Date: 05/12/2020 Adapter: DSX-8000 (DSX-PLA-8-TERA) Adapter: DSX-8000R (DSX-PLA-8-TERA) S/N: 19470006

Page 4

Test Summary: PASS Remote: Versiv

S/N: 1932375 Software Version: V6.6 Build 2 S/N: 19470005

	Worst Case Margin		Worst 0	Case Value
PASS	MAIN	SR	MAIN	SR
Worst Pair	4,5	1,2	1,2	1,2
TCL (dB)	6.7	6.8	11.6	9.1
Freq. (MHz)	70.8	25.5	372.0	370.0
Limit (dB)	25.6	33.1	13.3	13.3
N/A	MAIN	SR	MAIN	SR
Worst Pair			7,8-4,5	7,8-4,5
CDNEXT (dB)		40.2	36.6
Freq. (MHz)			1434.	1434.
Limit (dB)				
N/A	MAIN	SR	MAIN	SR
Worst Pair			4,5	4,5
CMRL (dB)			3.4	5.2
Freq. (MHz)			1886.	1646.
Limit (dB)				
PASS	MAIN	SR	MAIN	SR
Worst Pair	7,8	7,8	3,6	1,2
ELTCTL (dB)	6.2	3.2	14.4	14.6
Freq. (MHz)	1.0	1.0	2000.	1988.
Limit (dB)	46.8	46.8	3.0	3.0
Ennie (GE)	40.0			

Project: CAT8 2.1 Cat8 test 2.flw

LinkWare™ PC Version 10.8.1

Issue date	22/06/21
Test Report	
TR	170-21
Pag. 32 of 36	Rev. 0

Test on 2 Octobyte connections – ISO/IEC 11801 Cat. II Permanent Link 2

ISO11801 PL Class II (+All) DSX-8000	Hea S/N:	droom (NEXT): 8.8 : 1932179	dB	PASS
Detall	Status	Value	Limit	Margin
Pair 4,5, 1934.0 MHz Pair 4,5-7,8, 129.0 MHz Pair 4,5-7,8, 129.0 MHz Pair 4,5, 7,8, 129.0 MHz Pair 4,5, 129.0 MHz Pair 4,5, 737.0 MHz Pair 4,5, 737.0 MHz Pair 4,5, 737.0 MHz Pair 4,5, 737.0 MHz Pair 4,5, 1650.0 MHz Pair 3,6, 2000.0 MHz Pair 3,6 Pair 3,6	PASS PASS PASS PASS PASS PASS PASS PASS	22.2 73.2 72.1 68.6 67.4 55.9 53.6 19.9 32.3 40.7 5.2 17.4 23.5 111 2 3.00 0.010 0.000	24.9 64.4 58.5 55.5 36.1 33.2 18.0 18.6 3.0 147 9 6.00 0.200	2.7 8.8 10.7 10.1 11.9 19.8 20.4 1.9 13.7 14.4 36 7 3.00 0.190
	ISO ISO11801 PL Class II (+AII) DSX-8000 Detail Pair 4,5, 1934.0 MHz Pair 4,5-7,8, 129.0 MHz Pair 4,5, 129.0 MHz Pair 4,5, 129.0 MHz Pair 4,5, 129.0 MHz Pair 4,5, 02.0 MHz Pair 4,5, 03.0 MHz Pair 4,5, 165.0 MHz Pair 4,5, 165.0 MHz Pair 3,6, 2000.0 MHz Pair 3,6 Pair 3,6 Pair 3,6 Pair 3,6 Pair 3,6 Pair 3,6 Pair 3,6 Pair 3,6-7,8	ISO ISO11801 PL Class II (+Ali) Hea S/N: Detail Status Pair 4,5, 1934.0 MHz PASS Pair 4,5,7,8, 129.0 MHz PASS Pair 4,5,737.0 MHz PASS Pair 4,5,737.0 MHz PASS Pair 4,5,70.8 MHz PASS Pair 4,5, 163.0 MHz PASS Pair 4,5, 50.0 MHz PASS Pair 4,5, 60.0 MHz PASS Pair 3,6, 120.0 MHz PASS Pair 3,6 PASS Pair 3,6	ISO ISO11801 PL Class II (+AII) DSX-8000 Headroom (NEXT): 8.8 S/N: 1932179 Detail Status Value Pair 4,5, 1934.0 MHz PASS 22.2 Pair 4,5, 1934.0 MHz PASS 73.2 Pair 4,5, 1934.0 MHz PASS 73.2 Pair 4,5, 129.0 MHz PASS 68.6 Pair 4,5, 129.0 MHz PASS 67.4 Pair 4,5, 129.0 MHz PASS 55.9 Pair 4,5, 129.0 MHz PASS 55.9 Pair 4,5, 737.0 MHz PASS 55.9 Pair 4,5, 70.8 MHz PASS 32.3 Pair 4,5, 160.3 MHz PASS 32.3 Pair 4,5, 60.3 MHz PASS 32.3 Pair 4,5, 60.3 MHz PASS 32.3 Pair 3,6, 10.0 MHz PASS 17.4 Pair 3,6 PASS 111 Pair 3,6 PASS 2 Pair 3,6 PASS 3.00 Pair 3,6 PASS 0.010 Pair 3,6 PASS 0.010 Pair 3,6 PASS 0.009	ISO DSX-8000 Headroom (NEXT): 8.8 dB S/N: 1932179 Detail Status Value Limit Pair 4,5, 1934.0 MHz PASS 22.2 24.9 Pair 4,5, 1934.0 MHz PASS 73.2 64.4 Pair 4,5, 7,8, 129.0 MHz PASS 72.1 61.4 Pair 4,5,7,8, 129.0 MHz PASS 68.6 68.5 Pair 4,5,7,8, 129.0 MHz PASS 67.4 55.5 Pair 4,5, 737.0 MHz PASS 55.9 36.1 Pair 4,5, 737.0 MHz PASS 19.9 18.0 Pair 4,5, 70.8 MHz PASS 32.3 18.6 Pair 4,5, 6200.0 MHz PASS 17.4 3.0 Pair 3,6 PASS 111 147 Pair 3,6 PASS 3.00 6.00 Pair 3,6 PASS 3.00 6.00 P

				lss	sue date	22/06
\bigcap		•			Test Report	
<mark>o l</mark> e	ENA	$U_{\mathbb{R}}$		-	TR	170-2
				Pag.	33 of 36	Rev.
Cable ID: TERA Cable Type: Cat 8 S/I VP: 72.0%	E TM PC GEMENT SOFTWAR A + 2 OCTO (I PL Class II (+A 2 1 04:55:36 PM REMONINI EXT 4,5-7,8) TP	E CAT8 ISO II) Ma Ad	ain: Versiv S/N: 1932 Software ¹ Calibration dapter: DS S/N: 1947	/ 179 Version: V6.6 Build 2 h Date: 05/14/2020 X-8000 (DSX-PLA-8-TERA 0006	Test Summary Remote: Versiv S/N: 1932375 Software Version: V8.6 Bui Calibration Date: 05/12/202 Adapter: DSX-8000R (DSX-PLA-8-TE S/N: 19470005	(d 2 0 RA)
Wire Map PASS (T568B)	1 2 3 4 5 6 7 1 2 3 4 5 6 7	8 S 8 S		2	3.5 m	
Prop. Delay (ns), L Delay Skew (ns), L Resistance (ohms), Resist. Unbal. (ohms), L Resist. P2P Unbal. (ohm	imit 147 [f imit 9 [f , Limit 6.00 [f Jmit 0.200 [f ns), Limit 0.200 [F	ani (,2] 23.3 Pair 3,6] 1.11 Pair 3,6] 2 Pair 3,6] 3.00 Pair 1,2] 0.010 Pair 3,6-7,8] 0.009	2 2 2 2 2 2 5 0 0 0 2 5 0 0 0 2 5 0 0 0 2 5 0 0 2 5 0 0 2 5 0 0 2 5 0 0 2 5 0 0 0 2 5 0 0 0 0	HDTDR (%)	Insertion Loss (dB) 50 40 30 20 10	
Insertion Loss Mar Frequency (MHz) Limit (dB)	gin (dB) [f [f [f	Pair 4,5] 2.7 Pair 4,5] 1934.0 Pair 4,5] 24.9	7 D D D D D D D D D D D D D D D D D D D	0 5 10 15 20 25 m NEXT (dB)	0 500 1000 1500 200 MHz NEXT @ Remote (dB)	0
Wor PASS Worst Pair NEXT (dB) Freq. (MHz) Limit (dB)	t Case Margin MAIN SR 4,5-7,8 4,5-7,8 9.6 8.8 129.5 129.0 64.4 64.4	Worst Case Va MAIN SF 4,5-7,8 1,2-3, 25.5 16,1 1982, 1718 27,8 30,2	alue 80 R 60 1,6 40 .6 20 B. 20 .3 0	50 100 100 200		
Worst Pair PS NEXT (dB) Freq. (MHz) Limit (dB) PASS	7,8 4,5 11.4 10.7 129.5 129.0 61.4 61.4 MAIN SR	7,8 1, 26.9 19.3 1982. 1718 24.8 27.3 MAIN SF	,2 .5 8. 100 .3 80 R 60	MHz ACR-F (dB)	ACR-F @ Remote (dB)	
Worst Pair ACR-F (dB) Freq. (MHz) Limit (dB) Worst Pair PS ACR-F (dB)	7,8-4,5 4,5-7,8 19.8 19.9 745.0 746.0 36.1 36.1 4,5 3,6 20.4 20.6	29.8 30. 1968. 1968 15.1 15. 4.5 3, 31.2 32	.5 40 .5 20 8. 0 .1 0 .6	500 1000 1500 2000 MHz ACR-N (dB)	40 20 0 500 1000 1500 200 MHz ACR-N (Q Remote (dB)	0
Preq. (MHz) Limit (dB) PASS Worst Pair ACR-N (dB) Freq. (MHz)	737.0 412.0 33.2 38.2 MAIN SR 4,5-7,8 4,5-7,8 11.0 10.1 129.5 129.0	1968. 1930 12.1 12.4 MAIN SF 4,5-7,8 1,2-3 30.6 18.1 1982. 1720	U. 100 .4 80 R 60 .5 40 .8 20 0.			
Limit (dB) Worst Pair PS ACR-N (dB) Freq. (MHz) Limit (dB)	58.4 58.5 4,5 4,5 12.8 11.9 129.0 129.0 55.5 55.5	2.6 6.1 4,5 3, 31.0 21.1 1978. 1720 -0.3 3.1	.9 0 ,6 .8 0. 60 .9 50	500 1000 1500 2000 MHz RL (dB)	0 500 1000 1500 200 MHz 0 RL @ Remote (dB) 50	
PASS Worst Pair RL (dB) Freq. (MHz) Limit (dB)	MAIN SR 4,5 4,5 2.4 1.9 80.0 80.3 18.0 18.0	MAIN SF 4,5 4, 6,2 4,1 1960, 1632 6,3 7,1	R 30 ,5 20 .8 10 .8 0	500 1000 1500 2000 MHz	30 20 0 0 500 1000 1500 200 MHz	0
10BASE-T 100 100BASE-T 2.5 100BASE-T 2.5 100BASE-T 250 ATM-25 ATT	198. 19885-TX 11 98885-T 54 98885-T 44 M-51 A	108A3E-T4 38A3E-T 108A3E-T TM-155			LinkWare™ PC	Version 10.8.1
1001/92/1010-02.1 TR 8112/51/22/11W*	4 T	R-16 Active	P	age 3	FLUKE netw	orks.

TR

Pag. 34 of 36

Issue date	22/06/21
Test Report	
TR	170-21
Pag. 35 of 36	Rev. 0

Issue date	22/06/21
Test Report	
TR	170-21
Pag. 36 of 36	Rev. 0

1.8. Comments / remarks - commenti / osservazioni

Test	Cable	1 Octobyte connection	2 Octobyte connections
TIA/EIA 568 CAT 8 Permanent Link	PASS	PASS	PASS
ISO11801 Class II Permanent Link 2	PASS	PASS	PASS